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ABSTRACT 

In this paper, we consider multi-item inventory management. When managing a multi-item inventory, we coordinate 
replenishment orders of items supplied by the same supplier. The associated problem is called the joint replenishment 
problem (JRP). One often-used approach to the JRP is to apply a can-order policy. Under a can-order policy, some 
items are re-ordered when their inventory level drops to or below their re-order level, and any other item with an in-
ventory level at or below its can-order level can be included in this order. In the present paper, we propose a method 
for finding the optimal parameter of a can-order policy, the can-order level, for each item in a lost-sales model. The 
main objectives in our model are minimizing the number of ordering, inventory, and shortage (i.e., lost-sales) respec-
tively, compared with the conventional JRP, in which the objective is to minimize total cost. In order to solve this 
multi-objective optimization problem, we apply a genetic algorithm. In a numerical experiment using actual shipment 
data, we simulate the proposed model and compare the results with those of other methods. 
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1.  INTRODUCTION 

Effective inventory management has played an im-
portant role in the success of supply chain management. 
It is important in inventory management to decide when 
and how much ordering of item. Usually, effective inven-
tory management is expected to lead to reduced amounts 
of inventory and shortage by proper ordering policies 
for each item. 

One well-known inventory model is the single ware-
house multi-retailer (SWMR) problem (e.g. Chan et al., 
2002). In the general SWMR problem, retailers know 
external demand of items over a finite planning horizon. 
Items are shipped from the suppliers to the warehouse 
and distributed from the warehouse to the retailers. The 
goal of this problem is to find an optimal replenishment 

timing and quantity to minimize the total transportation 
cost or inventory costs in the system. 

For multi-item inventory control, the joint replen-
ishment problem (JRP) coordinates the ordering quan-
tity of several items in a warehouse. For example, let us 
consider a warehouse with items supplied by only one 
supplier. When the inventory manager orders many items 
from the same supplier, the ordering cost charged de-
pends on the number of orders and the number of differ-
ent items ordered. Therefore, the ordering quantities of 
different items cannot be decided individually. The typi-
cal assumptions of the JRP are similar to those in the 
conventional economic ordering quantity model. These 
include (i) the demand is deterministic and constant, (ii) 
shortages are not allowed, (iii) there are no quantity dis-
counts, and (iv) the inventory cost is linear. 
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Goyal (1974) developed an algorithm to find the 
optimal solution under the classical JRP. Then Silver 
(1976) developed an efficient heuristic algorithm for 
solving this problem, which Kaspi and Rosenblatt (1991) 
improved. Reviews of the literature of JRP can be found 
in Goyal and Satir (1989) and Khouja and Goyal (2008). 
Recently, Amaya et al. (2013) proposed a new heuristic 
algorithm for solving the JRP under deterministic de-
mand and resource constraints. Yang et al. (2012) ap-
plied a genetic algorithm (GA) to the problem in which 
there are known multi-item demands, multiple retailers, 
a finite planning horizon, and cost functions including 
discounting, and then found the optimal total cost. Wang 
et al. (2012b) proposed a new differential evolution al-
gorithm for joint replenishment. Wang et al. (2012a) pro-
posed an efficient hybrid differential evolution algorithm 
for joint replenishment with delivery, as a traveling sales 
man problem. 

A can-order policy is one type of inventory man-
agement policy applied to the JRP. Can-order policies 
were originally suggested by Balintfy (1964), after which 
van Eijs (1994) showed that can-order policies are at 
least as good as other coordinated replenishment poli-
cies. A can-order policy is represented by a set of three 
parameters: (si, ci, Si), or simply (s, c, S). When the in-
ventory level of item i drops to or below si, called the re-
order level, an order is placed to bring the inventory 
level up to Si, called the order-up-to level. For any other 
items, j, whose inventory levels are less than their re-
spective can-order levels, cj, orders will also be placed 
so that inventory levels of items j are raised to Sj. Feder-
gruen et al. (1984) modeled a can-order policy as a 
semi-Markov decision problem with compound Poisson 
demands and positive lead-times. They showed that a 
can-order policy is considerably better than uncoordi-
nated policies, often providing as much as a 20% sav-
ings. 

Most previous research on can-order policies fo-
cuses on how to derive the optimal (s, c, S) values based 
on the algorithm. This line of research assumes that each 
levels of can-order policy, s, c and S, cannot fix to some 
value or that the correlated demand probabilities be-
tween any two items are already known (see, for exam-
ple, Liu and Yuan (2000)). However, this assumption 
introduces difficulties which make a can-order policy 
hard to apply to large problems. Furthermore, the Fed-
ergruen et al. (1984) decomposition approach may in-
troduce substantial errors (Atkins and Iyogun (1988), 
Pantumsinchai (1992), Dellaert and Poel (1996), Mel-
chiors (2002) and Johansen and Melchiors (2003)). The 
difficulty is that knowing how to define the demand 
relationships between each pair of items is often not 
enough in practice: a demand correlation among each 
triplet of items should be defined in advance. Tsai et al. 
(2009) proposed an association clustering algorithm to 
evaluate the correlated demands among multiple items. 
Their algorithm utilizes the “support” concept to meas-
ure the demand similarity among items. Based on these 

measurements, a clustering method is developed to group 
items with close demand and a can-order policy is ap-
plied to the clustering result. Zhao et al. (2011) proposed 
a new clustering algorithm for can-order policies. A good 
summary of other applications of can-order policies can 
be found in Kayis et al. (2008). 

Most previous research on JRP or can-order poli-
cies focuses on how to derive the optimal ordering quan-
tity or (s, c, S) values based on the algorithm. The re-
searches have assumption that the ordering quantities or 
ordering levels, (s, c, S) values of different items cannot 
be decided individually. This line of research assumes 
that each levels of can-order policy, s, c and S, cannot 
fix to some value. But, in actual inventory management, 
there are constraints of service level, related to s, or ca-
pacity limitation of shelf for each item, related to S. 

In our research, because the can-order levels of 
many items should be set under the situation where re-
order levels and order-up-to levels of each items should 
be fixed. Thus, we optimize the can-order level of each 
item by heuristic method. In this study, we compare the 
ordering penalty, the inventory penalty, and the shortage 
penalty. Therefore, we define this problem as a multi-
objective optimization problem. Therefore, we optimize 
can-order level of each item by genetic algorithm, which 
is well applied to multi-objective optimization problem. 

In our research, we determine proper can-order 
level of each items, and minimizes each objective value. 
Even if the problem is single-objective mathematical 
formulation, the model is NP-hard. The mathematical 
model can solve a small size problem in few items and 
short planning period. Since optimizing the size of our 
problem took too long time, we proposed GA for decid-
ing can-order level. And, because GA is well used for 
similar problem (Khouja et al. (2000) used GA for clas-
sical JRP, Moon and Cha (2006) confirm some extent of 
effectiveness of GA for constrained JRP, or Yang et al. 
(2012) used GA for SWMR), and GA is well used for 
multi objective optimization problem. Thus, this research 
also proposed and applied GA for deciding can-order 
level. Even if we can calculate total cost, where the sum 
of the three costs can be calculated, our proposed method 
can use by changing the calculation method of fitness 
value related to total cost. 

The remainder of this paper is organized as follows. 
The mathematical formulation for the deterministic de-
mand model is presented in Section 2. In Section 3, we 
propose a GA for obtaining can-order levels for the sto-
chastic demand problem when the re-order level and 
order-up-to level are decided separately for each item. 
The computational results are described in Section 4. 
Finally, conclusions are presented in Section 5. 

2.  PROBLEM FORMULATION 

Herein, we assume the existence of stable shipping 
data comprising the shipping date and order volumes of 



Applying Genetic Algorithm for Can-Order Policies in the Joint Replenishment Problem 

Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 3
  

 

items. For each item, i, the ordering policy is taken as (si, 
ci, Si), where the re-order level, si, and order-up-to level, 
Si, are parameters, and we decide the can-order level, ci. 

The features of our research are shown below and 
we formulate the problem as follows. We consider a multi-
item inventory management problem in which a ware-
house sells multiple items with no quantity discounts. 
Items can be kept in storage with a holding penalty and 
do not deteriorate. When demands cannot be fulfilled, 
items on hand are shipped and the shortage demand in-
duces a lost-sales penalty. In this problem, ordering pe-
nalty, inventory penalty, and shortage penalty are the 
objective functions. 

When the demands are deterministic and replen-
ishment from a supplier is periodic in a finite planning 
period, the multi-item inventory problem with a can-
order policy can be formulated as follows: 

 
1minimize t t

t T
f u y

∀ ∈

= ∑    (1) 

2minimize i i
t t

i I t T
f p o

∀ ∈ ∀ ∈

= ∑ ∑      (2) 

3minimize i i
t t

i I t T
f h l

∀ ∈ ∀ ∈

= ∑ ∑      (3) 

 
subject to 

1 ,i i i i i
t t t t tl x l o d− + − + =  , ,i I t T∀ ∈ ∀ ∈  (4) 

Mi
t tx y≤  , ,i I t T∀ ∈ ∀ ∈  (5) 

1 Mi i i i i
t t t tl d o r s− − + + ≥  , ,i I t T∀ ∈ ∀ ∈  (6) 

1 M(1 )i i i i i
t t t tl d o r s− − + − − ≤  , ,i I t T∀ ∈ ∀ ∈  (7) 

1 M(1 )i i i i i i
t t t t tS l d o x r−≤ − + + + −  , ,i I t T∀ ∈ ∀ ∈  (8) 

1 M(1 )i i i i i i
t t t t tS l d o x r−≥ − + + − −  , ,i I t T∀ ∈ ∀ ∈  (9) 

i iS c≥  ,i I∀ ∈  (10) 
i ic s≥  ,i I∀ ∈  (11) 

1 Mi i i i i
t t t tl d o k c− − + + ≥  , ,i I t T∀ ∈ ∀ ∈  (12) 

1 M(1 )i i i i i
t t t tl d o k c− − + − − ≤  , ,i I t T∀ ∈ ∀ ∈  (13) 
i i
t tq k≤  , ,i I t T∀ ∈ ∀ ∈  (14) 

i i
t t

i I
q r

∀ ∈

≤ ∑  , ,i I t T∀ ∈ ∀ ∈  (15) 

1 (1 )
| | 1

i i i
t t t

i I
q r k

I ∀ ∈

≥ − −
− ∑  , ,i I t T∀ ∈ ∀ ∈  (16) 

1 M(1 )i i i i i i
t t t t tS l d o x q−≤ − + + + −  , ,i I t T∀ ∈ ∀ ∈  (17) 

1 M(1 )i i i i i i
t t t t tS l d o x q−≥ − + + − −  , ,i I t T∀ ∈ ∀ ∈  (18) 

M( )i i i
t t tx r q≤ +  , ,i I t T∀ ∈ ∀ ∈  (19) 

i i
t to d≤  , ,i I t T∀ ∈ ∀ ∈  (20) 
, , , {0, 1},i i i

t t t ty r k q ∈  ,i I t T∀ ∈ ∀ ∈  
, , ,i i i i

t t tl x o c Z+∈  ,i I t T∀ ∈ ∀ ∈  
 
Decision variables 

th:  if order is placed in  day, then 1;  otherwise 0t t ty t y y= =  
: the can order level of itemic i  

th: the lost sales quantity of item  on the  dayi
to i t  

thinventory level of item  on the  dayi
tl i t：  

th: the ordering quantity of item  on the  dayi
tx i t  
: if  drop below  , then 1; otherwise, 0i i i i i

t t t tr l s r r= =  
: if  drop below , then 1;  otherwise,   0i i i i i

t t t tk l c k k= =  
: if  drop below (  1) and i i i i

t t tq l c k⇔ =  
that least one item is ordered at  day( max( ) 1),i

ti I
t r

∀ ∈
⇔ =  

then   1;i
tq =  

otherwise,   0i
tq =  

 
Parameters 

th: fixed ordering penalty on the daytu t  
th: lost sales penalty of item  on the  dayi

tp i t  
th: penalty of holding one unit item  on the  dayi

th i t  
th: demand of item  on the  dayi

td i t  
: the order up to level of itemiS i  
: the reorder level of itemis i  

M : big-M  
: the set of itemsI  
: the set of daysT  

 
The first objective function (Eq. (1)) considers the 

fixed ordering penalty within the planning period. The 
second objective function (Eq. (2)) considers the short-
age penalty within the planning period. The third objec-
tive function (Eq. (3)) considers the inventory penalty 
within the planning period. Eq. (4) is the inventory bal-
ancing equation for all items. Eq. (5) is a constraint on 
ordering when there is ordering of items within each 
planning period. By constraints (6) and (7), if the inven-
tory level drops to or below the re-order level, an order 
will be placed. Furthermore, by constraints (8) and (9), 
when the inventory level drops to or below the re-order 
level, the order quantity is set as the difference between 
the order-up-to level and the inventory level. Constraint 
(10) represents that each can-order level is no more than 
the order-up-to level. Constraint (11) represents that each 
re-order level is no more than the can-order level. Con-
straints (12) and (13) identify whether the inventory level 
of an item has dropped to or below its can-order level. 
By constraints (14), (15), and (16), when the inventory 
level of at least one item has dropped to or below its re-
order level, an order is placed that includes items for 
which the inventory level has dropped to or below the 
can-order level. By constraints (17) and (18), the items 
for which the inventory level has dropped to or below 
the can-order level will be ordered in the quantity equal 
to the difference between the order-up-to level and the 
inventory level. Constraint (19) represents that items for 
which the inventory level has dropped to or below the 
can-order or the re-order level can be ordered. Con-
straint (20) represents that the shortage amount of each 
item is no more than the demand of the corresponding 
period. 
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The problem is multi-objective optimization prob-
lem. Therefore we propose real value genetic algorithm 
for deciding can-order level of each item. If fixed order-
ing cost, holding cost and shortage cost are assessed ex-
actly, and if each function are same units, we can make 
single objective optimization. But, the mathematical op-
timization problem model is still known as NP-hard. 

3.  IMPLEMENTATION OF GENETIC 
ALGORITHM (GA) 

In this study, the mathematical formulation at pre-
vious chapter could not be solved by mathematical op-
timization solver, because it is multi-objective optimiza-
tion model. We apply a can-order policy for an item set. 
For the model, a GA was applied in order to obtain a 
better solution than deciding the ordering quantity of 
each item separately, according to the number of order, 
the amount of shortage, or the amount of storage. In 
addition, because we used simulation for evaluating 
each level of ordering policy, we can set each level of 
ordering policy for the situation where demands are sto-
chastic or where inventory manager does not know fu-
ture demand. 

In order to solve the multi-item inventory problem 
with a can-order policy, we used a GA approach. A GA 
is an adaptive heuristic search algorithm based on the 
evolutionary concept of natural selection. The basic con-
cept of a GA is to simulate processes in a natural system 
that are necessary for evolution, specifically the proc-
esses that follow the principles of survival of the fittest 
first laid down by Charles Darwin. As such, these proc-
esses represent an intelligent exploitation of a random 
search within a defined search space for the purpose of 
resolving a problem. GAs are typically used to solve 
combinatorial problems that cannot be handled by ex-
haustive, multi-objective, or exact methods, due to their 
prohibitive complexity. 

 
Start

Initialization

Selection

End

Crossover

Mutation

Termination?

Calculate 
fitness function

Genetic
operation

No
Yes

 
Figure 1. Outline of a genetic algorithm. 

The basic procedure of the GA approach is to code 
the decision variables of the problem as a finite-length 
array (referred to as a chromosome) and calculate the 
objective value (fitness) of each chromosome. Based on 
the fitness, the probability of survival for each chromo-
some is calculated. The surviving chromosomes then 
reproduce and form the chromosomes of the next gen-
eration through crossover and mutation processes. Fig-
ure 1 shows the outline of a GA. 

3.1 Chromosome Representation 

A chromosome is a set of genes related to the solu-
tion of the problem. A critical issue when applying GAs 
to an optimization problem is the selection of a suitable 
encoding scheme for transforming feasible solutions 
into genetic representations and vice versa. 

In the present paper, we assume that the order-up-
to level, Si, and the re-order level, si, of each item are 
fixed value and we decide the separate can-order level. 

In this study, as shown in Table 1, if we define the 
number of items as n and define the number of members 
of the set of binary string genes for each item as m, the 
can-order level of all items can be represented by an nm-
length chromosome. The can-order level of each item is 
determined from the corresponding m-length string of 
binary genes. The values of each gene are taken as 0 or 
1, and each gene is referred to as a bit. 

In some GAs, encoding and decoding are carried 
out using binary strings. Traditional binary coding for 
function optimization is known to have a weakness due 
to the large change of a real parameter value arising 
from changing a single bit in the binary string of the 
parameter. For example, the binary strings 01111111 
and 11111111, which differ in only one bit, correspond 
to the decimal numbers 63 and 127, respectively. 

“Gray code” (Gray, 1953) is alternative method of 
encoding parameters in terms of bits. Gray code has the 
property that an increase by one step in the value of a 
design variable corresponds to the change of a single bit 
in the binary string of the design variable. Andre et al. 
(2001) compared binary coding and Gray coding in 
terms of GAs using two-point crossover and concluded 
that Gray coding helped to improve the speed relative to 
binary coding. The conversion from Gray coding to bi-
nary coding is given by ( )1

mod 2 .k
k ii

b g
=

= ∑  We decode 
the m-length gene section of each item to a can-order 
level as a Gray code. 

 
Table 1. Example chromosome of the genetic representa-

tion scheme 
Item : i 1 2 n 

Index of gene 1 … m m+1 … 2m (n-1)m+1 … nm
Gene 0 … 1 1 … 0 0 … 1

Can-order 
level: ic  7 15 

… 

5 
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3.2 Initial Population 

During the initialization process, a predefined num-
ber of chromosomes are randomly generated to repre-
sent the can-order levels for all items. In this initializa-
tion phase, we also create special chromosome in which 
the can-order levels of each item correspond to their re-
order levels by setting all of genes in this chromosome 
to zero, the chromosomes represent only using prede-
fined order-up-to level and re-order level and not using 
can-order level. 

3.3 Fitness Function 

A fitness function is a particular type of objective 
function that prescribes the optimality of a chromosome. 
Optimal chromosomes, or at least chromosomes with 
near-optimal values, are allowed to breed and mix their 
datasets following one of a number of techniques to 
produce a new generation with improved characteristics. 

In this study, the fitness function is defined in terms 
of the original objective functions. The fitness function 
of the chromosome, f (chromosome), is represented as 
follows: 

 

( ) ( ) min3

max min
1

chromosome1chromosome 1 ,
3

e e

e e e

f f
f

f f=

⎛ ⎞−
= −⎜ ⎟⎜ ⎟−⎝ ⎠
∑  

 
where fe (chromosome), e = 1, 2, 3, denotes the objective 
values defined by Eq. (1) through (3), respectively. These 
values are the results of the simulation when the chro-
mosome is applied with the ordering policy. Here, fe

max 
is the maximum value in the current generation of objec-
tive function e calculated by the simulation results. 
Similarly, fe

min is the minimum value in the current gen-
eration. We calculate the fitness values at each genera-
tion and use them to improve the pool of potential solu-
tions in the selection step. 

3.4 Genetic Operations 

Once initialization and fitness calculation have been 
performed, the genetic operations, which include selec-
tion, crossover, and mutation, are carried out. Along with 
new fitness calculations, these operations are repeated 
until the termination conditions are satisfied. At the end 
of each round of genetic operations, a new generation of 
chromosomes is obtained from the processes described 
below for the next iteration, and it is hoped this process 
will eventually yield an optimal individual. 

 
3.4.1 Selection 

The selection operator selects chromosomes in the 
population for producing the next generation. Well-fitting 
chromosomes are likely to be selected for the next gen-
eration. There are several selection methods, such as 
roulette wheel selection, tournament selection, and ran-

dom selection. In this study, we use the roulette wheel 
selection method, in which the probability of being se-
lected is directly proportional to the fitness of the chro-
mosome. 

 
3.4.2 Crossover 

The crossover operator roughly mimics biological 
recombination between two single-chromosome organ-
isms. In the present study, we use a two-point crossover 
method. The crossover operation is illustrated in Figure 2. 

First, we select two parent chromosomes, indicated 
in the figure by red dashed lines ( ) and blue double 
lines ( ). In two-point crossover, subsequence of 
genes are randomly selected and exchanged relative to 
the parents to create two children (in the figure, the source 
parent of genes in a child is indicated by the same color/ 
line designations as those of the parents). 

The crossover points at which the chromosome is 
broken are randomly selected. If there is at least one 
crossover, child 1 and child 2 are created and replace the 
parents in the new population. However, with some 
probability, no crossover occurs and the parents are cop-
ied unchanged into the new population. The probability 
of at least one crossover occurring for a parent chromo-
some pair is usually set between 40 and 90%. 

 
3.4.3 Mutation 

The mutation operator is used to maintain genetic 
diversity from one generation of a population of chro-
mosomes to the next. Mutation should allow the algo-
rithm to avoid local optima by preventing the population 
of chromosomes from becoming too similar to each 
other. The mutation operator is applied to each child 
solution resulting from the crossover operation and is 
usually defined as a change in the values of genes in a 
chromosome. In this study, as shown in Figure 3, the 
mutation operator changes one randomly selected gene, 
indicated by the red dashed line ( ). Mutation can 
occur on any chromosome with some small probability, 
usually set between 0.0001 and 0.1. 

 

 
Figure 2. Basic procedure of the two-point crossover 

operation. 
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Figure 3. Basic procedure of the mutation operation. 

4.  EXPERIMENT AND RESULTS 

In this study, we use an (s, c, S) policy with fixed s 
and S and optimize the can-order level, c, of each item 
by GA. The can-order level of each items are repre-
sented by the bit strings, as shown in Table 1. We apply 
the GA for actual shipping data. We decode each gene 
and obtain can-order level of each item. By the can-
order level and fixed s and S, we simulate the can-order 
policy and evaluate the combination of can-order levels 
of each item. The combination of can-order levels of 
each item is chromosome in GA. The fitness value of 
chromosome is from the simulation results. 

4.1 Data Set 

In the numerical and simulation experiments, we 
used the actual data for the shipments of a distribution 
company for a one-year period. This distribution center 
orders items to several suppliers. In addition, the distri-
bution center ordered 200 items to one specific supplier. 
We applied the proposed method and determine can-
order level of those 200 items jointly. 

We simulated (s, c, S) policies to the shipping data 
and set the parameters as described below. The lead 
time, i.e., the time from when the items were ordered to 
when the items were delivered, was set to two days. Re-
order level, si, of each item was set to the mean two-day 
demand over the year plus 95% safety stock for two 
days. The order-up-to level, Si, of each item was set to 
the mean 28-day demand over the year. The GA pa-
rameters in experimental results were set as follows. The 
probability of crossover occurring is 90%; the probabil-
ity for mutation is 0.04%; the maximum number of gen-
erations is 5000; the number of chromosomes in each 
generation is 1000. Roulette selection was used at each 
generation as the selection operation. 

4.2 Evaluation Criteria 

In this study, a higher fitness value represents and 
makes Pareto solution. Each of the three objective val-
ues of ordering penalty, inventory holding penalty and 
shortage penalty are evaluated from a simulation of the 
actual data. And, based on those three objective values, 
fitness values of each chromosome are calculated. By im-
proving the fitness value in GA, the chromosomes, which 
represents the can-order policy for each item, become 

well Pareto solutions. This method is called “adaptive-
weight GA.” 

4.3 Experimental Results 

The simulation results for the proposed model are 
shown in Figures 4, 5, and 6, which show the Pareto 
solutions for inventory vs. shortage, inventory vs. order-
ing, and shortage vs. ordering, respectively. In Figures 4, 
5, and 6, the orange closed circles are the results of ap-
plying an (s, S) policy, which is an (s, c, S) policy with 
the can-order level, c, set to the same value as the re-
order level, s. Blue triangles denote results from using 
the initial can-order level, which was decoded as a Gray 
code from a randomly generated chromosome taken from 
the initial generation. Red crosses denote the results of 
Pareto solutions at the chromosomes of the 5000th gen-
erations in the GA. 

As shown in Figure 4, in terms of shortage, the (s, 
S) policy is inferior to using a can-order policy by result 
of chromosome from the 5000th generation in the GA. 
Because the can-order levels were set separately for 
each item, the on-hand levels of inventory are high and 
prevent shortage. In addition, the increases in the inven-
tory levels are relatively small. 
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Figure 4. Pareto solutions of inventory vs. shortage. 
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Figure 5. Pareto solutions of inventory vs. ordering. 
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Figure 6. Pareto solutions of ordering vs. shortage. 

 
As shown in Figure 5, the inventory level of the (s, 

S) policy is low, since there are a large number of orders. 
The number of orders was reduced by using the can-
order level by the GA for 5000th generations. This is be-
cause items, which are ordered separately under the (s, S) 
policy, are ordered jointly when applying the can-order 
policy. However, the inventory levels were higher under 
the can-order policy with the GA. 

As shown in Figure 6, when a (s, S) policy is used, 
the number of orderings is high and the shortage is large. 
The proposed method succeeded in reducing the number 
of orderings, and the amount of shortage. Since there were 
high inventory levels, the number of orderings and the 
amount of shortage decreased under the can-order policy 
because of increased opportunities for joint ordering. 

Based on these results, under the conditions con-
sidered herein, we demonstrated that we could reduce 
the number of orderings and amount of shortage by ap-
plying a can-order policy with a GA. For introducing 
can-order level, since inventory levels were increased 
somewhat, if we could set can-order level of each item 
appropriately, the number of order and the number of 
shortage could reduce. 

4.4 Validation of the Performance 

In this section, we introduce the fixed fraction, ,α  
of can-order level and make comparison with proposed 
GA for making readers conviction that the proposed 
model can be more reliable and can propose several 
choices of inventory management. The “α ” is defines 
as follow: 

 
i i

i i

c s
S s

α −
=

−
i I∀ ∈   (21) 

 
Eq. (21) denotes that the common fixed fraction, ,α  

of can-order level is set to all item, and can-order level 
is set between the re-order level and order-up-to level by 
certain fraction for each item. When the α  is set as 1.0, 
the can-order level of every item are set to the order-up-

to level of each item. Therefore, when the α  is set as 
1.0, if the inventory level of some item drops to or be-
low the re-order level, all items are replenished to each 
item’s order-up-to level. On the other hand, when the α  
is set as 0.0, the can-order level of every item are set to 
the re-order level. Therefore, there are only orderings 
triggered by re-order level. When the α  is set as 0.0, the 
ordering policy is same of (s, S) ordering policy, in sec-
tion 4.3. 

The results for the common fixed fraction of can-
order level and proposed model are shown in Figure 7, 8 
and 9 and Table 2. The figure shows the Pareto solution 
after the 5000th GA iteration and the result of changed 
fixed fraction of can-order level by 0.1 steps from 0.0 to 
1.0 for inventory vs. shortage, inventory vs. ordering 
and ordering vs. shortage. In Figure 7, 8 and 9, the result 
of proposed model and the result of changed fixed frac-
tion of can-order level are denoted by red crosses and 
orange circles respectively. 

In Figure 7 and 8, the left-top orange circle is the 
result of the case where fixed fraction of can-order level,  

,α  is set as 0.0, as (s, S) ordering policy, in section 4.3. 
On the other hand the right-bottom orange circle is the 
result of the case where ,α  is set as 1.0. From this result, 
we can reduce the amount of shortage and the number of 
ordering instead of increasing the inventory. 

 

300
500
700
900

1100
1300
1500
1700
1900
2100

20000 25000 30000 35000

Shortage

Inventory

Fixed fraction
5000th generation

Sh
or

ta
ge

 
Figure 7. Pareto solutions of inventory vs. shortage. 
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Figure 8. Pareto solutions of inventory vs. ordering. 
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Figure 9. Pareto solutions of ordering vs. shortage. 
 
In Figure 9, the right-top orange circle is the result 

of the case where fixed fraction of can-order level, ,α  is 
set as 0.0. On the other hand the left-bottom orange cir-
cle is the result of the case where α  is set as 1.0. From 
this result, we can reduce the amount of shortage and the 
number of ordering by increasing the common fixed 
fraction of can-order level. But, in Figure 9, the left-
bottom orange circle is still competitive with the result 
of proposed GA, denoted by red crosses.  

In Figure 7, 8 and 9, the Pareto solutions of pro-
posed model appear at the direction of the origin. Thus, 
our proposed method is better than setting can-order 
level by the common fixed fraction of can-order level. 

Table 2 shows the variation of the can-order policy 
and the result of each objective values. From this result, 
if we increase the common fixed fraction of can-order 
level, α , the amount of inventory increase but the num-
ber of ordering and the amount of shortage decrease, 
because ordering jointly triggered by can-order level. 

As shown in Table 2, proposed GA could superior 
if we decide appropriate can-order level. From the com-
parison of introducing the fixed can-order level and pro-
posed GA results, the proposed method could provide 
choice of ordering policy for inventory manager, and the 
proposed method could superior from introducing the 
fixed can-order level by fraction. 

Figure 10 shows the fraction of can-order level of 
each item at the chromosome, which takes the highest 
fitness value in 5000th GA iteration. The 

iα  is calcu-
lated by the Eq. (21), but because the value is different 
between every item, there is superscript notation of item 
i. In the Figure 10, items were rearranged into descend-
ing order by the fraction of can-order level of each item. 

As shown in Figure 10, the optimal fraction of 
some items is 1.0, which represent that the item is or-
dered every time, when order is triggered by other item. 
However, the optimal fraction of some items is 0.0, 
which represent that the item should be ordered inde-
pendent from other items. The other items, the optimal 
fractions are distributed exponentially, or except uni-
formly. From this result, we should not decide can-order 
level of each item by the common fraction of can-order 
level. 

Table 2. Results of the fixed can-order fraction and 
proposed method 

Method Inventory Ordering Shortage
α = 0.0 21,119 292 2,057
α = 0.1 22,215 234 1,046
α = 0.2 23,644 187 698
α = 0.3 25,396 160 589
α = 0.4 26,492 122 495
α = 0.5 28,132 108 805
α = 0.6 29,324 101 466
α = 0.7 30,794  93 428
α = 0.8 32,126  89 408
α = 0.9 33,452  88 390

Fixed 
can-order
level by 

fraction α

α = 1.0 34,196  88 374
Solution of  
dominating (s, S) 
((s, S) ⇔.α = 0.0) 

21,112 287 761

Solution of best 
fitness value 22,089 105 356

Average 22,006 154 495
Maximun 25,177 296 1,494

Proposed GA
(Pareto 

Solutions
of 5000th

generation)

Minimun 20,952  86 356
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Figure 10. Optimal fraction of can-order level of each item 

 
Based on these results, under the conditions con-

sidered herein, we demonstrated that we could reduce 
the number of orderings, amount of inventory and amount 
of shortage by applying a can-order policy with a GA. 
For introducing can-order level, appropriate can-order 
level of each item is different between each item. Even 
if the can-order level is decided by some common frac-
tion, the can-order policy could be some choices for 
inventory manager. But, if we can optimize can-order 
level of each item, by proposed GA, the optimized can-
order policy can be superior choices for inventory man-
ager. 

5.  CONCLUSIONS 

In this paper, a multi-item inventory problem with 
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a can-order policy was considered. The objective of this 
problem is to determine the can-order level of each item 
in order to minimize the number of items in storage, the 
number of out-of-stock items, and the number of placed 
orders. 

Since the mathematical model has multiple objec-
tive functions, we proposed using a GA to provide better 
solutions. An objective of this research is to verify that 
inventory management could be improved by introduc-
ing “can-order policy,” even if “can-order level” was cal-
culated by heuristics. Thus, proposed method for calcu-
lating optimal can-order level showed the importance 
for introducing can-order policy and considering opti-
mal can-order level, even if re-order levels and order-
up-to levels of items are fixed. Actual shipment data 
were used to verify the performance of the proposed GA. 

In the numerical experiment, we simulated the can-
order policy. By showing that some chromosomes of the 
can-order policy outperform the results of applying or-
dering policies separately, the simulation study results 
indicate that applying ordering policies separately for 
different items did not provide effective inventory man-
agement. In addition, inventory manager should con-
sider appropriate can-order level of each item. 

Further study is required to check the proper pa-
rameter settings of the crossover rate and the mutation 
rate of the proposed GA and can-order policy. And, we 
should make comparison with other heuristics, as Tabu 
search or Particle swarm optimization etc., and make 
some comparison with other implementation method of 
GA and other parameter setting. We should optimize the 
order-up-to level and the re-order level of each item as 
well, since we used these as parameters. And, we should 
reveal the item characteristic affecting can-order level, 
or fraction of can-order level. Furthermore, we should 
compare the results to the solution of optimizing a 
weighted sum of objective functions obtained using a 
mathematical programming solver. Finally, the relation-
ship between the items shipping characteristics and the 
applied can-order policy should be also considered.  
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