

Applying Genetic Algorithm for Can-Order
Policies in the Joint Replenishment Problem

Keisuke Nagasawa*, Takashi Irohara
Department of Information and Communication Sciences, Sophia University, Tokyo, Japan

Yosuke Matoba, Shuling Liu
Fairway Solutions Inc., Tokyo, Japan

(Received: January 5, 2014 / Revised: October 6, 2014; February 17, 2015 / Accepted: March 9, 2015)

ABSTRACT

In this paper, we consider multi-item inventory management. When managing a multi-item inventory, we coordinate
replenishment orders of items supplied by the same supplier. The associated problem is called the joint replenishment
problem (JRP). One often-used approach to the JRP is to apply a can-order policy. Under a can-order policy, some
items are re-ordered when their inventory level drops to or below their re-order level, and any other item with an in-
ventory level at or below its can-order level can be included in this order. In the present paper, we propose a method
for finding the optimal parameter of a can-order policy, the can-order level, for each item in a lost-sales model. The
main objectives in our model are minimizing the number of ordering, inventory, and shortage (i.e., lost-sales) respec-
tively, compared with the conventional JRP, in which the objective is to minimize total cost. In order to solve this
multi-objective optimization problem, we apply a genetic algorithm. In a numerical experiment using actual shipment
data, we simulate the proposed model and compare the results with those of other methods.

Keywords: Inventory Modeling and Management, Logistics and Supply Chain Management(L/SCM), Supply Chain

Management(SCM), Evolutionary Algorithms, Warehouse Operation and Management

* Corresponding Author, E-mail: nagasa-k@sophia.jp

1. INTRODUCTION

Effective inventory management has played an im-
portant role in the success of supply chain management.
It is important in inventory management to decide when
and how much ordering of item. Usually, effective inven-
tory management is expected to lead to reduced amounts
of inventory and shortage by proper ordering policies
for each item.

One well-known inventory model is the single ware-
house multi-retailer (SWMR) problem (e.g. Chan et al.,
2002). In the general SWMR problem, retailers know
external demand of items over a finite planning horizon.
Items are shipped from the suppliers to the warehouse
and distributed from the warehouse to the retailers. The
goal of this problem is to find an optimal replenishment

timing and quantity to minimize the total transportation
cost or inventory costs in the system.

For multi-item inventory control, the joint replen-
ishment problem (JRP) coordinates the ordering quan-
tity of several items in a warehouse. For example, let us
consider a warehouse with items supplied by only one
supplier. When the inventory manager orders many items
from the same supplier, the ordering cost charged de-
pends on the number of orders and the number of differ-
ent items ordered. Therefore, the ordering quantities of
different items cannot be decided individually. The typi-
cal assumptions of the JRP are similar to those in the
conventional economic ordering quantity model. These
include (i) the demand is deterministic and constant, (ii)
shortages are not allowed, (iii) there are no quantity dis-
counts, and (iv) the inventory cost is linear.

Industrial Engineering
& Management Systems
Vol 14, No 1, March 2015, pp.1-10 http://dx.doi.org/10.7232/iems.2015.14.1.001
ISSN 1598-7248│EISSN 2234-6473│ © 2015 KIIE

Nagasawa, Irohara, Matoba, and Liu: Industrial Engineering & Management Systems
Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 2

Goyal (1974) developed an algorithm to find the
optimal solution under the classical JRP. Then Silver
(1976) developed an efficient heuristic algorithm for
solving this problem, which Kaspi and Rosenblatt (1991)
improved. Reviews of the literature of JRP can be found
in Goyal and Satir (1989) and Khouja and Goyal (2008).
Recently, Amaya et al. (2013) proposed a new heuristic
algorithm for solving the JRP under deterministic de-
mand and resource constraints. Yang et al. (2012) ap-
plied a genetic algorithm (GA) to the problem in which
there are known multi-item demands, multiple retailers,
a finite planning horizon, and cost functions including
discounting, and then found the optimal total cost. Wang
et al. (2012b) proposed a new differential evolution al-
gorithm for joint replenishment. Wang et al. (2012a) pro-
posed an efficient hybrid differential evolution algorithm
for joint replenishment with delivery, as a traveling sales
man problem.

A can-order policy is one type of inventory man-
agement policy applied to the JRP. Can-order policies
were originally suggested by Balintfy (1964), after which
van Eijs (1994) showed that can-order policies are at
least as good as other coordinated replenishment poli-
cies. A can-order policy is represented by a set of three
parameters: (si, ci, Si), or simply (s, c, S). When the in-
ventory level of item i drops to or below si, called the re-
order level, an order is placed to bring the inventory
level up to Si, called the order-up-to level. For any other
items, j, whose inventory levels are less than their re-
spective can-order levels, cj, orders will also be placed
so that inventory levels of items j are raised to Sj. Feder-
gruen et al. (1984) modeled a can-order policy as a
semi-Markov decision problem with compound Poisson
demands and positive lead-times. They showed that a
can-order policy is considerably better than uncoordi-
nated policies, often providing as much as a 20% sav-
ings.

Most previous research on can-order policies fo-
cuses on how to derive the optimal (s, c, S) values based
on the algorithm. This line of research assumes that each
levels of can-order policy, s, c and S, cannot fix to some
value or that the correlated demand probabilities be-
tween any two items are already known (see, for exam-
ple, Liu and Yuan (2000)). However, this assumption
introduces difficulties which make a can-order policy
hard to apply to large problems. Furthermore, the Fed-
ergruen et al. (1984) decomposition approach may in-
troduce substantial errors (Atkins and Iyogun (1988),
Pantumsinchai (1992), Dellaert and Poel (1996), Mel-
chiors (2002) and Johansen and Melchiors (2003)). The
difficulty is that knowing how to define the demand
relationships between each pair of items is often not
enough in practice: a demand correlation among each
triplet of items should be defined in advance. Tsai et al.
(2009) proposed an association clustering algorithm to
evaluate the correlated demands among multiple items.
Their algorithm utilizes the “support” concept to meas-
ure the demand similarity among items. Based on these

measurements, a clustering method is developed to group
items with close demand and a can-order policy is ap-
plied to the clustering result. Zhao et al. (2011) proposed
a new clustering algorithm for can-order policies. A good
summary of other applications of can-order policies can
be found in Kayis et al. (2008).

Most previous research on JRP or can-order poli-
cies focuses on how to derive the optimal ordering quan-
tity or (s, c, S) values based on the algorithm. The re-
searches have assumption that the ordering quantities or
ordering levels, (s, c, S) values of different items cannot
be decided individually. This line of research assumes
that each levels of can-order policy, s, c and S, cannot
fix to some value. But, in actual inventory management,
there are constraints of service level, related to s, or ca-
pacity limitation of shelf for each item, related to S.

In our research, because the can-order levels of
many items should be set under the situation where re-
order levels and order-up-to levels of each items should
be fixed. Thus, we optimize the can-order level of each
item by heuristic method. In this study, we compare the
ordering penalty, the inventory penalty, and the shortage
penalty. Therefore, we define this problem as a multi-
objective optimization problem. Therefore, we optimize
can-order level of each item by genetic algorithm, which
is well applied to multi-objective optimization problem.

In our research, we determine proper can-order
level of each items, and minimizes each objective value.
Even if the problem is single-objective mathematical
formulation, the model is NP-hard. The mathematical
model can solve a small size problem in few items and
short planning period. Since optimizing the size of our
problem took too long time, we proposed GA for decid-
ing can-order level. And, because GA is well used for
similar problem (Khouja et al. (2000) used GA for clas-
sical JRP, Moon and Cha (2006) confirm some extent of
effectiveness of GA for constrained JRP, or Yang et al.
(2012) used GA for SWMR), and GA is well used for
multi objective optimization problem. Thus, this research
also proposed and applied GA for deciding can-order
level. Even if we can calculate total cost, where the sum
of the three costs can be calculated, our proposed method
can use by changing the calculation method of fitness
value related to total cost.

The remainder of this paper is organized as follows.
The mathematical formulation for the deterministic de-
mand model is presented in Section 2. In Section 3, we
propose a GA for obtaining can-order levels for the sto-
chastic demand problem when the re-order level and
order-up-to level are decided separately for each item.
The computational results are described in Section 4.
Finally, conclusions are presented in Section 5.

2. PROBLEM FORMULATION

Herein, we assume the existence of stable shipping
data comprising the shipping date and order volumes of

Applying Genetic Algorithm for Can-Order Policies in the Joint Replenishment Problem

Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 3

items. For each item, i, the ordering policy is taken as (si,
ci, Si), where the re-order level, si, and order-up-to level,
Si, are parameters, and we decide the can-order level, ci.

The features of our research are shown below and
we formulate the problem as follows. We consider a multi-
item inventory management problem in which a ware-
house sells multiple items with no quantity discounts.
Items can be kept in storage with a holding penalty and
do not deteriorate. When demands cannot be fulfilled,
items on hand are shipped and the shortage demand in-
duces a lost-sales penalty. In this problem, ordering pe-
nalty, inventory penalty, and shortage penalty are the
objective functions.

When the demands are deterministic and replen-
ishment from a supplier is periodic in a finite planning
period, the multi-item inventory problem with a can-
order policy can be formulated as follows:

1minimize t t

t T
f u y

∀ ∈

= ∑ (1)

2minimize i i
t t

i I t T
f p o

∀ ∈ ∀ ∈

= ∑ ∑ (2)

3minimize i i
t t

i I t T
f h l

∀ ∈ ∀ ∈

= ∑ ∑ (3)

subject to

1 ,i i i i i
t t t t tl x l o d− + − + = , ,i I t T∀ ∈ ∀ ∈ (4)

Mi
t tx y≤ , ,i I t T∀ ∈ ∀ ∈ (5)

1 Mi i i i i
t t t tl d o r s− − + + ≥ , ,i I t T∀ ∈ ∀ ∈ (6)

1 M(1)i i i i i
t t t tl d o r s− − + − − ≤ , ,i I t T∀ ∈ ∀ ∈ (7)

1 M(1)i i i i i i
t t t t tS l d o x r−≤ − + + + − , ,i I t T∀ ∈ ∀ ∈ (8)

1 M(1)i i i i i i
t t t t tS l d o x r−≥ − + + − − , ,i I t T∀ ∈ ∀ ∈ (9)

i iS c≥ ,i I∀ ∈ (10)
i ic s≥ ,i I∀ ∈ (11)

1 Mi i i i i
t t t tl d o k c− − + + ≥ , ,i I t T∀ ∈ ∀ ∈ (12)

1 M(1)i i i i i
t t t tl d o k c− − + − − ≤ , ,i I t T∀ ∈ ∀ ∈ (13)
i i
t tq k≤ , ,i I t T∀ ∈ ∀ ∈ (14)

i i
t t

i I
q r

∀ ∈

≤ ∑ , ,i I t T∀ ∈ ∀ ∈ (15)

1 (1)
| | 1

i i i
t t t

i I
q r k

I ∀ ∈

≥ − −
− ∑ , ,i I t T∀ ∈ ∀ ∈ (16)

1 M(1)i i i i i i
t t t t tS l d o x q−≤ − + + + − , ,i I t T∀ ∈ ∀ ∈ (17)

1 M(1)i i i i i i
t t t t tS l d o x q−≥ − + + − − , ,i I t T∀ ∈ ∀ ∈ (18)

M()i i i
t t tx r q≤ + , ,i I t T∀ ∈ ∀ ∈ (19)

i i
t to d≤ , ,i I t T∀ ∈ ∀ ∈ (20)
, , , {0, 1},i i i

t t t ty r k q ∈ ,i I t T∀ ∈ ∀ ∈
, , ,i i i i

t t tl x o c Z+∈ ,i I t T∀ ∈ ∀ ∈

Decision variables

th: if order is placed in day, then 1; otherwise 0t t ty t y y= =
: the can order level of itemic i

th: the lost sales quantity of item on the dayi
to i t

thinventory level of item on the dayi
tl i t：

th: the ordering quantity of item on the dayi
tx i t
: if drop below , then 1; otherwise, 0i i i i i

t t t tr l s r r= =
: if drop below , then 1; otherwise, 0i i i i i

t t t tk l c k k= =
: if drop below (1) and i i i i

t t tq l c k⇔ =
that least one item is ordered at day(max() 1),i

ti I
t r

∀ ∈
⇔ =

then 1;i
tq =

otherwise, 0i
tq =

Parameters

th: fixed ordering penalty on the daytu t
th: lost sales penalty of item on the dayi

tp i t
th: penalty of holding one unit item on the dayi

th i t
th: demand of item on the dayi

td i t
: the order up to level of itemiS i
: the reorder level of itemis i

M : big-M
: the set of itemsI
: the set of daysT

The first objective function (Eq. (1)) considers the

fixed ordering penalty within the planning period. The
second objective function (Eq. (2)) considers the short-
age penalty within the planning period. The third objec-
tive function (Eq. (3)) considers the inventory penalty
within the planning period. Eq. (4) is the inventory bal-
ancing equation for all items. Eq. (5) is a constraint on
ordering when there is ordering of items within each
planning period. By constraints (6) and (7), if the inven-
tory level drops to or below the re-order level, an order
will be placed. Furthermore, by constraints (8) and (9),
when the inventory level drops to or below the re-order
level, the order quantity is set as the difference between
the order-up-to level and the inventory level. Constraint
(10) represents that each can-order level is no more than
the order-up-to level. Constraint (11) represents that each
re-order level is no more than the can-order level. Con-
straints (12) and (13) identify whether the inventory level
of an item has dropped to or below its can-order level.
By constraints (14), (15), and (16), when the inventory
level of at least one item has dropped to or below its re-
order level, an order is placed that includes items for
which the inventory level has dropped to or below the
can-order level. By constraints (17) and (18), the items
for which the inventory level has dropped to or below
the can-order level will be ordered in the quantity equal
to the difference between the order-up-to level and the
inventory level. Constraint (19) represents that items for
which the inventory level has dropped to or below the
can-order or the re-order level can be ordered. Con-
straint (20) represents that the shortage amount of each
item is no more than the demand of the corresponding
period.

Nagasawa, Irohara, Matoba, and Liu: Industrial Engineering & Management Systems
Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 4

The problem is multi-objective optimization prob-
lem. Therefore we propose real value genetic algorithm
for deciding can-order level of each item. If fixed order-
ing cost, holding cost and shortage cost are assessed ex-
actly, and if each function are same units, we can make
single objective optimization. But, the mathematical op-
timization problem model is still known as NP-hard.

3. IMPLEMENTATION OF GENETIC
ALGORITHM (GA)

In this study, the mathematical formulation at pre-
vious chapter could not be solved by mathematical op-
timization solver, because it is multi-objective optimiza-
tion model. We apply a can-order policy for an item set.
For the model, a GA was applied in order to obtain a
better solution than deciding the ordering quantity of
each item separately, according to the number of order,
the amount of shortage, or the amount of storage. In
addition, because we used simulation for evaluating
each level of ordering policy, we can set each level of
ordering policy for the situation where demands are sto-
chastic or where inventory manager does not know fu-
ture demand.

In order to solve the multi-item inventory problem
with a can-order policy, we used a GA approach. A GA
is an adaptive heuristic search algorithm based on the
evolutionary concept of natural selection. The basic con-
cept of a GA is to simulate processes in a natural system
that are necessary for evolution, specifically the proc-
esses that follow the principles of survival of the fittest
first laid down by Charles Darwin. As such, these proc-
esses represent an intelligent exploitation of a random
search within a defined search space for the purpose of
resolving a problem. GAs are typically used to solve
combinatorial problems that cannot be handled by ex-
haustive, multi-objective, or exact methods, due to their
prohibitive complexity.

Start

Initialization

Selection

End

Crossover

Mutation

Termination?

Calculate
fitness function

Genetic
operation

No
Yes

Figure 1. Outline of a genetic algorithm.

The basic procedure of the GA approach is to code
the decision variables of the problem as a finite-length
array (referred to as a chromosome) and calculate the
objective value (fitness) of each chromosome. Based on
the fitness, the probability of survival for each chromo-
some is calculated. The surviving chromosomes then
reproduce and form the chromosomes of the next gen-
eration through crossover and mutation processes. Fig-
ure 1 shows the outline of a GA.

3.1 Chromosome Representation

A chromosome is a set of genes related to the solu-
tion of the problem. A critical issue when applying GAs
to an optimization problem is the selection of a suitable
encoding scheme for transforming feasible solutions
into genetic representations and vice versa.

In the present paper, we assume that the order-up-
to level, Si, and the re-order level, si, of each item are
fixed value and we decide the separate can-order level.

In this study, as shown in Table 1, if we define the
number of items as n and define the number of members
of the set of binary string genes for each item as m, the
can-order level of all items can be represented by an nm-
length chromosome. The can-order level of each item is
determined from the corresponding m-length string of
binary genes. The values of each gene are taken as 0 or
1, and each gene is referred to as a bit.

In some GAs, encoding and decoding are carried
out using binary strings. Traditional binary coding for
function optimization is known to have a weakness due
to the large change of a real parameter value arising
from changing a single bit in the binary string of the
parameter. For example, the binary strings 01111111
and 11111111, which differ in only one bit, correspond
to the decimal numbers 63 and 127, respectively.

“Gray code” (Gray, 1953) is alternative method of
encoding parameters in terms of bits. Gray code has the
property that an increase by one step in the value of a
design variable corresponds to the change of a single bit
in the binary string of the design variable. Andre et al.
(2001) compared binary coding and Gray coding in
terms of GAs using two-point crossover and concluded
that Gray coding helped to improve the speed relative to
binary coding. The conversion from Gray coding to bi-
nary coding is given by ()1

mod 2 .k
k ii

b g
=

= ∑ We decode
the m-length gene section of each item to a can-order
level as a Gray code.

Table 1. Example chromosome of the genetic representa-

tion scheme
Item : i 1 2 n

Index of gene 1 … m m+1 … 2m (n-1)m+1 … nm
Gene 0 … 1 1 … 0 0 … 1

Can-order
level: ic 7 15

…

5

Applying Genetic Algorithm for Can-Order Policies in the Joint Replenishment Problem

Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 5

3.2 Initial Population

During the initialization process, a predefined num-
ber of chromosomes are randomly generated to repre-
sent the can-order levels for all items. In this initializa-
tion phase, we also create special chromosome in which
the can-order levels of each item correspond to their re-
order levels by setting all of genes in this chromosome
to zero, the chromosomes represent only using prede-
fined order-up-to level and re-order level and not using
can-order level.

3.3 Fitness Function

A fitness function is a particular type of objective
function that prescribes the optimality of a chromosome.
Optimal chromosomes, or at least chromosomes with
near-optimal values, are allowed to breed and mix their
datasets following one of a number of techniques to
produce a new generation with improved characteristics.

In this study, the fitness function is defined in terms
of the original objective functions. The fitness function
of the chromosome, f (chromosome), is represented as
follows:

() () min3

max min
1

chromosome1chromosome 1 ,
3

e e

e e e

f f
f

f f=

⎛ ⎞−
= −⎜ ⎟⎜ ⎟−⎝ ⎠
∑

where fe (chromosome), e = 1, 2, 3, denotes the objective
values defined by Eq. (1) through (3), respectively. These
values are the results of the simulation when the chro-
mosome is applied with the ordering policy. Here, fe

max
is the maximum value in the current generation of objec-
tive function e calculated by the simulation results.
Similarly, fe

min is the minimum value in the current gen-
eration. We calculate the fitness values at each genera-
tion and use them to improve the pool of potential solu-
tions in the selection step.

3.4 Genetic Operations

Once initialization and fitness calculation have been
performed, the genetic operations, which include selec-
tion, crossover, and mutation, are carried out. Along with
new fitness calculations, these operations are repeated
until the termination conditions are satisfied. At the end
of each round of genetic operations, a new generation of
chromosomes is obtained from the processes described
below for the next iteration, and it is hoped this process
will eventually yield an optimal individual.

3.4.1 Selection

The selection operator selects chromosomes in the
population for producing the next generation. Well-fitting
chromosomes are likely to be selected for the next gen-
eration. There are several selection methods, such as
roulette wheel selection, tournament selection, and ran-

dom selection. In this study, we use the roulette wheel
selection method, in which the probability of being se-
lected is directly proportional to the fitness of the chro-
mosome.

3.4.2 Crossover

The crossover operator roughly mimics biological
recombination between two single-chromosome organ-
isms. In the present study, we use a two-point crossover
method. The crossover operation is illustrated in Figure 2.

First, we select two parent chromosomes, indicated
in the figure by red dashed lines () and blue double
lines (). In two-point crossover, subsequence of
genes are randomly selected and exchanged relative to
the parents to create two children (in the figure, the source
parent of genes in a child is indicated by the same color/
line designations as those of the parents).

The crossover points at which the chromosome is
broken are randomly selected. If there is at least one
crossover, child 1 and child 2 are created and replace the
parents in the new population. However, with some
probability, no crossover occurs and the parents are cop-
ied unchanged into the new population. The probability
of at least one crossover occurring for a parent chromo-
some pair is usually set between 40 and 90%.

3.4.3 Mutation

The mutation operator is used to maintain genetic
diversity from one generation of a population of chro-
mosomes to the next. Mutation should allow the algo-
rithm to avoid local optima by preventing the population
of chromosomes from becoming too similar to each
other. The mutation operator is applied to each child
solution resulting from the crossover operation and is
usually defined as a change in the values of genes in a
chromosome. In this study, as shown in Figure 3, the
mutation operator changes one randomly selected gene,
indicated by the red dashed line (). Mutation can
occur on any chromosome with some small probability,
usually set between 0.0001 and 0.1.

Figure 2. Basic procedure of the two-point crossover

operation.

Nagasawa, Irohara, Matoba, and Liu: Industrial Engineering & Management Systems
Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 6

Figure 3. Basic procedure of the mutation operation.

4. EXPERIMENT AND RESULTS

In this study, we use an (s, c, S) policy with fixed s
and S and optimize the can-order level, c, of each item
by GA. The can-order level of each items are repre-
sented by the bit strings, as shown in Table 1. We apply
the GA for actual shipping data. We decode each gene
and obtain can-order level of each item. By the can-
order level and fixed s and S, we simulate the can-order
policy and evaluate the combination of can-order levels
of each item. The combination of can-order levels of
each item is chromosome in GA. The fitness value of
chromosome is from the simulation results.

4.1 Data Set

In the numerical and simulation experiments, we
used the actual data for the shipments of a distribution
company for a one-year period. This distribution center
orders items to several suppliers. In addition, the distri-
bution center ordered 200 items to one specific supplier.
We applied the proposed method and determine can-
order level of those 200 items jointly.

We simulated (s, c, S) policies to the shipping data
and set the parameters as described below. The lead
time, i.e., the time from when the items were ordered to
when the items were delivered, was set to two days. Re-
order level, si, of each item was set to the mean two-day
demand over the year plus 95% safety stock for two
days. The order-up-to level, Si, of each item was set to
the mean 28-day demand over the year. The GA pa-
rameters in experimental results were set as follows. The
probability of crossover occurring is 90%; the probabil-
ity for mutation is 0.04%; the maximum number of gen-
erations is 5000; the number of chromosomes in each
generation is 1000. Roulette selection was used at each
generation as the selection operation.

4.2 Evaluation Criteria

In this study, a higher fitness value represents and
makes Pareto solution. Each of the three objective val-
ues of ordering penalty, inventory holding penalty and
shortage penalty are evaluated from a simulation of the
actual data. And, based on those three objective values,
fitness values of each chromosome are calculated. By im-
proving the fitness value in GA, the chromosomes, which
represents the can-order policy for each item, become

well Pareto solutions. This method is called “adaptive-
weight GA.”

4.3 Experimental Results

The simulation results for the proposed model are
shown in Figures 4, 5, and 6, which show the Pareto
solutions for inventory vs. shortage, inventory vs. order-
ing, and shortage vs. ordering, respectively. In Figures 4,
5, and 6, the orange closed circles are the results of ap-
plying an (s, S) policy, which is an (s, c, S) policy with
the can-order level, c, set to the same value as the re-
order level, s. Blue triangles denote results from using
the initial can-order level, which was decoded as a Gray
code from a randomly generated chromosome taken from
the initial generation. Red crosses denote the results of
Pareto solutions at the chromosomes of the 5000th gen-
erations in the GA.

As shown in Figure 4, in terms of shortage, the (s,
S) policy is inferior to using a can-order policy by result
of chromosome from the 5000th generation in the GA.
Because the can-order levels were set separately for
each item, the on-hand levels of inventory are high and
prevent shortage. In addition, the increases in the inven-
tory levels are relatively small.

0

500

1000

1500

2000

2500

20000 25000 30000 35000

Shortage

Inventory

(s, S)
Initial generation
5000th generation

Sh
or

ta
ge

Figure 4. Pareto solutions of inventory vs. shortage.

0

50

100

150

200

250

300

350

20000 25000 30000 35000

Ordering

Inventory

(s, S)
Initial generation
5000th generation

O
rd

er
in

g

Figure 5. Pareto solutions of inventory vs. ordering.

Applying Genetic Algorithm for Can-Order Policies in the Joint Replenishment Problem

Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 7

0

500

1000

1500

2000

2500

20000 25000 30000 35000
Inventory

(s, S)
Initial generation
5000th generation

Sh
or

ta
ge

Figure 6. Pareto solutions of ordering vs. shortage.

As shown in Figure 5, the inventory level of the (s,

S) policy is low, since there are a large number of orders.
The number of orders was reduced by using the can-
order level by the GA for 5000th generations. This is be-
cause items, which are ordered separately under the (s, S)
policy, are ordered jointly when applying the can-order
policy. However, the inventory levels were higher under
the can-order policy with the GA.

As shown in Figure 6, when a (s, S) policy is used,
the number of orderings is high and the shortage is large.
The proposed method succeeded in reducing the number
of orderings, and the amount of shortage. Since there were
high inventory levels, the number of orderings and the
amount of shortage decreased under the can-order policy
because of increased opportunities for joint ordering.

Based on these results, under the conditions con-
sidered herein, we demonstrated that we could reduce
the number of orderings and amount of shortage by ap-
plying a can-order policy with a GA. For introducing
can-order level, since inventory levels were increased
somewhat, if we could set can-order level of each item
appropriately, the number of order and the number of
shortage could reduce.

4.4 Validation of the Performance

In this section, we introduce the fixed fraction, ,α
of can-order level and make comparison with proposed
GA for making readers conviction that the proposed
model can be more reliable and can propose several
choices of inventory management. The “α ” is defines
as follow:

i i

i i

c s
S s

α −
=

−
i I∀ ∈ (21)

Eq. (21) denotes that the common fixed fraction, ,α

of can-order level is set to all item, and can-order level
is set between the re-order level and order-up-to level by
certain fraction for each item. When the α is set as 1.0,
the can-order level of every item are set to the order-up-

to level of each item. Therefore, when the α is set as
1.0, if the inventory level of some item drops to or be-
low the re-order level, all items are replenished to each
item’s order-up-to level. On the other hand, when the α
is set as 0.0, the can-order level of every item are set to
the re-order level. Therefore, there are only orderings
triggered by re-order level. When the α is set as 0.0, the
ordering policy is same of (s, S) ordering policy, in sec-
tion 4.3.

The results for the common fixed fraction of can-
order level and proposed model are shown in Figure 7, 8
and 9 and Table 2. The figure shows the Pareto solution
after the 5000th GA iteration and the result of changed
fixed fraction of can-order level by 0.1 steps from 0.0 to
1.0 for inventory vs. shortage, inventory vs. ordering
and ordering vs. shortage. In Figure 7, 8 and 9, the result
of proposed model and the result of changed fixed frac-
tion of can-order level are denoted by red crosses and
orange circles respectively.

In Figure 7 and 8, the left-top orange circle is the
result of the case where fixed fraction of can-order level,

,α is set as 0.0, as (s, S) ordering policy, in section 4.3.
On the other hand the right-bottom orange circle is the
result of the case where ,α is set as 1.0. From this result,
we can reduce the amount of shortage and the number of
ordering instead of increasing the inventory.

300
500
700
900

1100
1300
1500
1700
1900
2100

20000 25000 30000 35000

Shortage

Inventory

Fixed fraction
5000th generation

Sh
or

ta
ge

Figure 7. Pareto solutions of inventory vs. shortage.

50

100

150

200

250

300

20000 25000 30000 35000

Ordering

Inventory

Fixed fraction
5000th generation

O
rd

er
in

g

Figure 8. Pareto solutions of inventory vs. ordering.

Nagasawa, Irohara, Matoba, and Liu: Industrial Engineering & Management Systems
Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 8

300
500
700
900

1100
1300
1500
1700
1900
2100

50 150 250

Shortage

Ordering

Fixed fraction
5000th generation

Sh
or

ta
ge

Figure 9. Pareto solutions of ordering vs. shortage.

In Figure 9, the right-top orange circle is the result

of the case where fixed fraction of can-order level, ,α is
set as 0.0. On the other hand the left-bottom orange cir-
cle is the result of the case where α is set as 1.0. From
this result, we can reduce the amount of shortage and the
number of ordering by increasing the common fixed
fraction of can-order level. But, in Figure 9, the left-
bottom orange circle is still competitive with the result
of proposed GA, denoted by red crosses.

In Figure 7, 8 and 9, the Pareto solutions of pro-
posed model appear at the direction of the origin. Thus,
our proposed method is better than setting can-order
level by the common fixed fraction of can-order level.

Table 2 shows the variation of the can-order policy
and the result of each objective values. From this result,
if we increase the common fixed fraction of can-order
level, α , the amount of inventory increase but the num-
ber of ordering and the amount of shortage decrease,
because ordering jointly triggered by can-order level.

As shown in Table 2, proposed GA could superior
if we decide appropriate can-order level. From the com-
parison of introducing the fixed can-order level and pro-
posed GA results, the proposed method could provide
choice of ordering policy for inventory manager, and the
proposed method could superior from introducing the
fixed can-order level by fraction.

Figure 10 shows the fraction of can-order level of
each item at the chromosome, which takes the highest
fitness value in 5000th GA iteration. The

iα is calcu-
lated by the Eq. (21), but because the value is different
between every item, there is superscript notation of item
i. In the Figure 10, items were rearranged into descend-
ing order by the fraction of can-order level of each item.

As shown in Figure 10, the optimal fraction of
some items is 1.0, which represent that the item is or-
dered every time, when order is triggered by other item.
However, the optimal fraction of some items is 0.0,
which represent that the item should be ordered inde-
pendent from other items. The other items, the optimal
fractions are distributed exponentially, or except uni-
formly. From this result, we should not decide can-order
level of each item by the common fraction of can-order
level.

Table 2. Results of the fixed can-order fraction and
proposed method

Method Inventory Ordering Shortage
α = 0.0 21,119 292 2,057
α = 0.1 22,215 234 1,046
α = 0.2 23,644 187 698
α = 0.3 25,396 160 589
α = 0.4 26,492 122 495
α = 0.5 28,132 108 805
α = 0.6 29,324 101 466
α = 0.7 30,794 93 428
α = 0.8 32,126 89 408
α = 0.9 33,452 88 390

Fixed
can-order
level by

fraction α

α = 1.0 34,196 88 374
Solution of
dominating (s, S)
((s, S) ⇔.α = 0.0)

21,112 287 761

Solution of best
fitness value 22,089 105 356

Average 22,006 154 495
Maximun 25,177 296 1,494

Proposed GA
(Pareto

Solutions
of 5000th

generation)

Minimun 20,952 86 356

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

α i

Item index
Figure 10. Optimal fraction of can-order level of each item

Based on these results, under the conditions con-

sidered herein, we demonstrated that we could reduce
the number of orderings, amount of inventory and amount
of shortage by applying a can-order policy with a GA.
For introducing can-order level, appropriate can-order
level of each item is different between each item. Even
if the can-order level is decided by some common frac-
tion, the can-order policy could be some choices for
inventory manager. But, if we can optimize can-order
level of each item, by proposed GA, the optimized can-
order policy can be superior choices for inventory man-
ager.

5. CONCLUSIONS

In this paper, a multi-item inventory problem with

Applying Genetic Algorithm for Can-Order Policies in the Joint Replenishment Problem

Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 9

a can-order policy was considered. The objective of this
problem is to determine the can-order level of each item
in order to minimize the number of items in storage, the
number of out-of-stock items, and the number of placed
orders.

Since the mathematical model has multiple objec-
tive functions, we proposed using a GA to provide better
solutions. An objective of this research is to verify that
inventory management could be improved by introduc-
ing “can-order policy,” even if “can-order level” was cal-
culated by heuristics. Thus, proposed method for calcu-
lating optimal can-order level showed the importance
for introducing can-order policy and considering opti-
mal can-order level, even if re-order levels and order-
up-to levels of items are fixed. Actual shipment data
were used to verify the performance of the proposed GA.

In the numerical experiment, we simulated the can-
order policy. By showing that some chromosomes of the
can-order policy outperform the results of applying or-
dering policies separately, the simulation study results
indicate that applying ordering policies separately for
different items did not provide effective inventory man-
agement. In addition, inventory manager should con-
sider appropriate can-order level of each item.

Further study is required to check the proper pa-
rameter settings of the crossover rate and the mutation
rate of the proposed GA and can-order policy. And, we
should make comparison with other heuristics, as Tabu
search or Particle swarm optimization etc., and make
some comparison with other implementation method of
GA and other parameter setting. We should optimize the
order-up-to level and the re-order level of each item as
well, since we used these as parameters. And, we should
reveal the item characteristic affecting can-order level,
or fraction of can-order level. Furthermore, we should
compare the results to the solution of optimizing a
weighted sum of objective functions obtained using a
mathematical programming solver. Finally, the relation-
ship between the items shipping characteristics and the
applied can-order policy should be also considered.

REFERENCES

Amaya, C. A., Carvajal, J., and Castaño, F. (2013), A
heuristic framework based on linear programming
to solve the constrained joint replenishment prob-
lem (C-JRP), International Journal of Production
Economics, 144, 243-247.

Andre, J., Siarry, P., and Dognon, T. (2001), An impro-
vement of the standard genetic algorithm fighting
premature convergence in continuous optimization,
Advances in engineering software, 32, 49-60.

Atkins, D. R. and Iyogun, P. O. (1988), Periodic versus
‘can-order’ policies for coordinated multi-item in-
ventory systems, Management Science, 34, 791-796.

Balintfy, J. L. (1964), On a basic class of multi-item

inventory problems, Management Science, 10, 287-
297.

Chan, L. M. A., Muriel, A., and Shen, Z. J. M. (2002),
Effective zero-inventory-ordering policies for the
single-warehouse multi retailer problem with pie-
cewise linear cost structures, Management Science,
48, 1446-1460.

Dellaert, N. and Poel, E. (1996), Global inventory con-
trol in an academic hospital, International Journal
of Production Economics, 46, 277-284.

Federgruen, A., Groenevelt, H., and Tijms, H. C. (1984),
Coordinated replenishments in a multi-item inven-
tory system with compound Poisson demands, Ma-
nagement Science, 30, 344-357.

Goyal, S. K. (1974), Determination of optimum packag-
ing frequency of items jointly replenished, Manage-
ment Science, 21, 436-443.

Goyal, S. K. and Satir, A. T. (1989), Joint replenishment
inventory control: Deterministic and stochastic mo-
dels, European Journal of Operational Research,
38, 2-13.

Gray, F. (1953), Pulse Code Communication, United
States Patent Number 2621058.

Johansen, S. G. and Melchiors, P. (2003), Can-order
policy for the periodic review joint replenishment
problem, Journal of the Operational Research So-
ciety, 54, 283-290.

Kaspi, M. and Rosenblatt, M. J. (1991), On the econo-
mic ordering quantity for jointly replenishment items,
International Journal of Production Research, 29,
107-114.

Kayiş, E., Bilgiç, T., and Karabulut, D. (2008), A note
on the can-order policy for the two-item stochastic
joint-replenishment problem, IIE Transactions, 40,
84-92.

Khouja, M., Michalewicz, M., and Satoskar, S. (2000),
A comparison between genetic algorithms and the
RAND method for solving the joint replenishment
problem, Production Planning and Control, 11,
556-564.

Liu, L. and Yuan, X. M. (2000), Coordinated replen-
ishments in inventory systems with correlated de-
mands, European Journal of Operational Research,
123, 490-503.

Melchiors, P. (2002), Calculating can-order polices for
the joint replenishment problem by the compensa-
tion approach, European Journal of Operational
Research, 141, 587-595.

Moon, I. K. and Cha, B. C. (2006), The joint replenish-
ment problem with resource restriction, European
Journal of Operational Research, 173(1), 190-198.

Moutaz, K. and Goyal, S. (2008), A review of the joint
replenishment problem literature: 1989-2005, Eu-
ropean Journal of Operational Research, 186, 1-16.

Pantumsinchai, P. (1992), A comparison of three joint

Nagasawa, Irohara, Matoba, and Liu: Industrial Engineering & Management Systems
Vol 14, No 1, March 2015, pp.1-10, © 2015 KIIE 10

ordering inventory policies, Decision Sciences, 23,
111-127.

Silver, E. (1976), A simple method of determining order
quantities in joint replenishments under determinis-
tic demand, Management Science, 22, 1351-1361.

Tsai, C. Y., Tsai, C. Y., and Huang, P. W. (2009), An
association clustering algorithm for can-order poli-
cies in the joint replenishment problem, Interna-
tional Journal of Production Economics, 117, 30-
41.

van Eijs, M. J. (1994), On the determination of the con-
trol parameters of the optimal can-order policy,
ZOR-Mathematical Models of Operations Research,
39, 289-304.

Wang, L., Dun, C., Bi, W., and Zeng, Y. (2012a), An
effective and efficient differential evolution algo-

rithm for the integrated stochastic joint replenish-
ment and delivery model, Knowledge-Based Sys-
tems, 36, 104-114.

Wang, L., He, J., Wu, D., and Zeng Y. (2012b), A novel
differential evolution algorithm for joint replen-
ishment problem under interdependence and its ap-
plication, International Journal of Production Eco-
nomics, 135, 190-198.

Yang, W., Chan, F. T., and Kumar, V. (2012), Optimiz-
ing replenishment polices using Genetic Algorithm
for single-warehouse multi-retailer system, Expert
Systems with Applications, 39, 3081-3086.

Zhao, P., Zhang C., and Zhang X. (2011), A New Clus-
tering Algorithm for Can-order Policies in Joint
Replenishment Problem, Journal of Computational
Information Systems, 7, 1943-1950.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

