DOI QR코드

DOI QR Code

Fabrication of multi-well platform with electrical stimulation for efficient myogenic commitment of C2C12 cells

  • Song, Joohyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Eunjee A. (School of Chemical and Biological Engineering, Seoul National University) ;
  • Cha, Seungwoo (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Insun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Choi, Yonghoon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Hwang, Nathaniel S. (School of Chemical and Biological Engineering, Seoul National University)
  • Received : 2015.02.12
  • Accepted : 2015.02.25
  • Published : 2015.03.25

Abstract

To engineer tissue-like structures, cells are required to organize themselves into three-dimensional networks that mimic the native tissue micro-architecture. Here, we present agarose-based multi-well platform incorporated with electrical stimulation to build skeletal muscle-like tissues in a facile and highly reproducible fashion. Electrical stimulation of C2C12 cells encapsulated in collagen/matrigel hydrogels facilitated the formation 3D muscle tissues. Consequently, we confirmed the transcriptional upregulations of myogenic related genes in the electrical stimulation group compared to non-stimulated control group in our multi-well 3D culture platform. Given the robust fabrication, engineered muscle tissues in multi-well platform may find their use in high-throughput biological studies drug screenings.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Ahadian, S., Ramon-Azcon, J., Ostrovidov, S., Camci-Unal, G., Hosseini, V., Kaji, H., Ino, K., Shiku, H., Khademhosseini, A. and Matsue, T. (2012), "Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue", Lab. Chip., 12(18), 3491-3503. https://doi.org/10.1039/c2lc40479f
  2. Bischofs, I. and Schwarz, U. (2003), "Cell organization in soft media due to active mechanosensing", PNAS, 100(16), 9274-9279. https://doi.org/10.1073/pnas.1233544100
  3. Blau, H.M., Chiu, C.P. and Webster, C. (1983), "Cytoplasmic activation of human nuclear genes in stable heterocaryons", Cell, 32(4), 1171-1180. https://doi.org/10.1016/0092-8674(83)90300-8
  4. Carey, E.J. (1920), "Studies in the dynamics of histogenesis : Ii. Tension of differential growth as a stimulus to myogenesis in the esophagus", J. Gen. Physiol., 3(1), 61-83. https://doi.org/10.1085/jgp.3.1.61
  5. Cezar, C.A. and Mooney, D.J. (2014), "Biomaterial-based delivery for skeletal muscle repair", Adv. Drug Deliv. Rev., doi:10.1016/j.addr.2014.09.008.
  6. Chan, Y.C., Ting, S., Lee, Y.K., Ng, K.M., Zhang, J., Chen, Z., Siu, C.W., Oh, S.K. and Tse, H.F. (2013), "Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells", J. Cardiovascul. Trans. Res., 6(6), 989-999. https://doi.org/10.1007/s12265-013-9510-z
  7. Dennis, R.G. and Dow, D.E. (2007), "Excitability of skeletal muscle during development, denervation, and tissue culture", Tissue Eng., 13(10), 2395-2404. https://doi.org/10.1089/ten.2006.0367
  8. Dennis, R.G., Kosnik, P.E., 2nd, Gilbert, M.E. and Faulkner, J.A. (2001), "Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines", Am. J. Physiol. Cell Physiol., 280(2), C288-295. https://doi.org/10.1152/ajpcell.2001.280.2.C288
  9. Dumitriu, S. (2012), Polysaccharides: structural diversity and functional versatility, CRC Press.
  10. Emery, A.E. (2002), "The muscular dystrophies", Lancet., 359(9307), 687-695. https://doi.org/10.1016/S0140-6736(02)07815-7
  11. Fujita, H., Nedachi, T. and Kanzaki, M. (2007), "Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes", Exp. Cell Res., 313(9), 1853-1865. https://doi.org/10.1016/j.yexcr.2007.03.002
  12. Handschin, C., Mortezavi, A., Plock, J. and Eberli, D. (2014), "External physical and biochemical stimulation to enhance skeletal muscle bioengineering", Adv. Drug Deliv. Rev., doi:10.1016/j.addr.2014.10.021.
  13. Hosseini, V., Ahadian, S., Ostrovidov, S., Camci-Unal, G., Chen, S., Kaji, H., Ramalingam, M. and Khademhosseini, A. (2012), "Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate", Tissue Eng. Part A, 18(23-24), 2453-2465. https://doi.org/10.1089/ten.tea.2012.0181
  14. Huang, Y.C., Dennis, R.G., Larkin, L. and Baar, K. (2005), "Rapid formation of functional muscle in vitro using fibrin gels", J. Appl. Physiol., 98(2), 706-713. https://doi.org/10.1152/japplphysiol.00273.2004
  15. Kaji, H., Ishibashi, T., Nagamine, K., Kanzaki, M. and Nishizawa, M. (2010), "Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness", Biomater., 31(27), 6981-6986. https://doi.org/10.1016/j.biomaterials.2010.05.071
  16. Kislinger, T., Gramolini, A.O., Pan, Y., Rahman, K., MacLennan, D.H. and Emili, A. (2005), "Proteome dynamics during C2C12 myoblast differentiation", Mol. Cell Proteom., 4(7), 887-901. https://doi.org/10.1074/mcp.M400182-MCP200
  17. Langelaan, M.L., Boonen, K.J., Rosaria-Chak, K.Y., van der Schaft, D.W., Post, M.J. and Baaijens, F.P. (2011), "Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells", J. Tissue Eng. Regen. Med., 5(7), 529-539. https://doi.org/10.1002/term.345
  18. Manabe, Y., Miyatake, S., Takagi, M., Nakamura, M., Okeda, A., Nakano, T., Hirshman, M.F., Goodyear, L.J. and Fujii, N.L. (2012), "Characterization of an acute muscle contraction model using cultured C2C12 myotubes", PLoS One, 7(12), e52592. https://doi.org/10.1371/journal.pone.0052592
  19. Marotta, M., Bragos, R. and Gomez-Foix, A.M. (2004), "Design and performance of an electrical stimulator for long-term contraction of cultured muscle cells", Biotechniq., 36(1), 68-73.
  20. McDevitt, T.C., Angello, J.C., Whitney, M.L., Reinecke, H., Hauschka, S.D., Murry, C.E. and Stayton, P.S. (2002), "In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces", J. Biomed. Mater. Res., 60(3), 472-479. https://doi.org/10.1002/jbm.1292
  21. Nagamine, K., Kawashima, T., Ishibashi, T., Kaji, H., Kanzaki, M. and Nishizawa, M. (2010), "Micropatterning contractile C2C12 myotubes embedded in a fibrin gel", Biotechnol. Bioeng., 105(6), 1161-1167. https://doi.org/10.1002/bit.22636
  22. Nelson, C.M., Liu, W.F. and Chen, C.S. (2007), Adhesion Protein Protocols, Springer.
  23. Ostrovidov, S., Ahadian, S., Ramon-Azcon, J., Hosseini, V., Fujie, T., Parthiban, S.P., Shiku, H., Matsue, T., Kaji, H., Ramalingam, M., Bae, H. and Khademhosseini, A. (2014), "Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function", J. Tissue Eng. Regen. Med., DOI: 10.1002/term.1956.
  24. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., Freed, L.E. and Vunjak-Novakovic, G. (2004), "Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds", PNAS, 101(52), 18129-18134. https://doi.org/10.1073/pnas.0407817101
  25. Thelen, M.H., Simonides, W.S. and van Hardeveld, C. (1997), "Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene", Biochem. J., 321(Pt 3), 845-848. https://doi.org/10.1042/bj3210845
  26. van der Schaft, D.W., van Spreeuwel, A.C., Boonen, K.J., Langelaan, M.L., Bouten, C.V. and Baaijens, F.P. (2013), "Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation", J. Vis. Exp., 73, e4267.
  27. Wang, E., Yin, Y., Zhao, M., Forrester, J.V. and McCAIG, C.D. (2003), "Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation", FASEB, 17(3), 458-460.
  28. Yang, L., Li, C., Chen, L. and Li, Z. (2009), "An agarose-gel based method for transporting cell lines", Curr. Chem. Genom., 3, 50-53. https://doi.org/10.2174/1875397300903010050

Cited by

  1. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts vol.11, pp.51, 2015, https://doi.org/10.1021/acsami.9b16005