Abstract
The objective of the present study is to develop statistical quantitative forecast model for PM10 concentration over Seoul. We used three types of data (weather observation data in Korea, the China's weather observation data collected by GTS, and air quality numerical model forecasts). To apply the daily forecast system, hourly data are converted to daily data and then lagging was performed. The potential predictors were selected based on correlation analysis and multicollinearity check. Model validation has been performed for checking model stability. We applied two models (multiple regression model and threshold regression model) separately. The two models were compared based on the scatter plot of forecasts and observations, time series plots, RMSE, skill scores. As a result, a threshold regression model performs better than multiple regression model in high PM10 concentration cases.
본 연구는 PM10 농도에 대한 계량치 예측모형 개발을 목적으로 한다. 세 종류의 자료 (기상관측 자료, 세계기상통신망 중국 관측자료, 대기질 화학수치모델자료)를 예측인자로 사용하였으며, 일일 단기예보 시스템에 쉽게 적용할 수 있도록 시간자료를 일자료로 변환하였고 시차변환을 수행하였다. 상관분석과 다중공선성 진단을 통하여 예측인자를 선택하고 두 종류의 모형 (중회귀모형, 문턱치 회귀모형)을 각각 적합하였다. 모형 안정성 검사를 위하여 모형검증을 수행하였으며, 전체자료를 사용하여 모형을 재추정한 후 예측치와 관측치 사이의 산점도와 시계열그림, RMSE, 예측성 평가측도를 작성 및 산출하여 두 모형을 비교하였다. 문턱치 회귀모형의 예측력이 고농도 PM10예측에서 다소 우수한 결과를 보였다.