DOI QR코드

DOI QR Code

Development of statistical forecast model for PM10 concentration over Seoul

서울지역 PM10 농도 예측모형 개발

  • Sohn, Keon Tae (Department of Statistics, Pusan national University) ;
  • Kim, Dahong (Department of Statistics, Pusan national University)
  • Received : 2015.02.21
  • Accepted : 2015.03.19
  • Published : 2015.03.31

Abstract

The objective of the present study is to develop statistical quantitative forecast model for PM10 concentration over Seoul. We used three types of data (weather observation data in Korea, the China's weather observation data collected by GTS, and air quality numerical model forecasts). To apply the daily forecast system, hourly data are converted to daily data and then lagging was performed. The potential predictors were selected based on correlation analysis and multicollinearity check. Model validation has been performed for checking model stability. We applied two models (multiple regression model and threshold regression model) separately. The two models were compared based on the scatter plot of forecasts and observations, time series plots, RMSE, skill scores. As a result, a threshold regression model performs better than multiple regression model in high PM10 concentration cases.

본 연구는 PM10 농도에 대한 계량치 예측모형 개발을 목적으로 한다. 세 종류의 자료 (기상관측 자료, 세계기상통신망 중국 관측자료, 대기질 화학수치모델자료)를 예측인자로 사용하였으며, 일일 단기예보 시스템에 쉽게 적용할 수 있도록 시간자료를 일자료로 변환하였고 시차변환을 수행하였다. 상관분석과 다중공선성 진단을 통하여 예측인자를 선택하고 두 종류의 모형 (중회귀모형, 문턱치 회귀모형)을 각각 적합하였다. 모형 안정성 검사를 위하여 모형검증을 수행하였으며, 전체자료를 사용하여 모형을 재추정한 후 예측치와 관측치 사이의 산점도와 시계열그림, RMSE, 예측성 평가측도를 작성 및 산출하여 두 모형을 비교하였다. 문턱치 회귀모형의 예측력이 고농도 PM10예측에서 다소 우수한 결과를 보였다.

Keywords

References

  1. Cho, C., Chun, Y., Ku, B., Park, S., Lee, S. and Chung Y. (2007). Comparison of ADAM's(Asian Dust Aerosol Model) Results with Observed PM10 Data. Atmosphere, 17, 87-99.
  2. Itahashi, S., Uno, I. and Kim, S. (2012). Source Contributions of Sulfate Aerosol over East Asia Estimated by CMAQ-DDM. Environmental Science & Technology, 46, 6733-6741. https://doi.org/10.1021/es300887w
  3. Jeong, K. M. and Choi, Y. S. (2009). Categorical Data Analysis Using SAS, Free Academy, Seoul.
  4. Moon, N., Kim, S., Byun, D. W. and Joe, Y. (2006). Air Quality Modeling System I-Development of Emissions Preparation System with the CAPSS, Korea Environment Institute.
  5. Murphy, A. H. (1993). What is Good Forecast? An Essay on the Nature of Goodness in Weather Forecasting. Weather and Forecasting, 8, 281-293. https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
  6. Storch, H. V. and Zwiers, F. W. (1999). Statistical Analysis in Climate Research, Cambridge, Cambridge University Press, Cambridge.
  7. Tong, H. (1983). Threshold Models in Non-linear Time Series Analysis, Springer, New York.

Cited by

  1. Influenza prediction models by using meteorological and social media informations vol.26, pp.5, 2015, https://doi.org/10.7465/jkdi.2015.26.5.1087
  2. 미세먼지, 악취 농도 예측을 위한 앙상블 방법 vol.42, pp.4, 2015, https://doi.org/10.11627/jkise.2019.42.4.203
  3. 기상 데이터와 미세먼지 데이터를 활용한 머신러닝 기반 미세먼지 예측 모형 vol.24, pp.1, 2021, https://doi.org/10.11108/kagis.2021.24.1.092