DOI QR코드

DOI QR Code

Analysis of Protein Function and Comparison of Protein Expression of Different Environment in Soybean using Proteomics Techniques

Proteomics를 이용한 재배 환경에 따른 콩 종실 단백질 발현 양상 비교

  • Cho, Seong-Woo (Crop Breeding Research Division, NICS, RDA) ;
  • Kim, Tae-Sun (Department of Crop Science, Chungbuk National University) ;
  • Kwon, Soo-Jeong (Department of Crop Science, Chungbuk National University) ;
  • Roy, Swapan Kumar (Department of Crop Science, Chungbuk National University) ;
  • Lee, Chul-Won (Department of Crop Science, Chungbuk National University) ;
  • Kim, Hong-Sig (Department of Crop Science, Chungbuk National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University)
  • 조성우 (국립식량과학원 작물육종과) ;
  • 김태선 (충북대학교 식물자원학과) ;
  • 권수정 (충북대학교 식물자원학과) ;
  • ;
  • 이철원 (충북대학교 식물자원학과) ;
  • 김홍식 (충북대학교 식물자원학과) ;
  • 우선희 (충북대학교 식물자원학과)
  • Received : 2014.12.28
  • Accepted : 2015.03.02
  • Published : 2015.03.31

Abstract

Soybean is very useful crop to supply vegetable protein for human. Supply of soybean is increased because it has useful ingredient. Recently, cultivation of soybean in paddy field is increasing due to the increase of rice stockpile in Korea. Hence, in this study, expression of protein was identified regarding different environment for cultivation to investigate the effect of different environment on protein expression. Two-dimensional electrophoresis was performed to investigate the expression of protein using image analysis program to measure degree of protein expression in numerical value. Hannam-kong, Beakcheon-Kong, Hwangkeum-Kong, and Danwon-Kong were used as plant material. 2-DE combined with image analysis revealed that each degree of protein expression of Hannam-Kong and Hwangkeum-Kong in upland field was higher than degree of protein expression in paddy field. However, in case of Beackcheon-Kong, the phenomenon was opposite. In Danwon-kong, the degree of protein expression was not different between up-land field and paddy field. To this end, major protein spots were not different between paddy field and upland field among all cultivars. It could be suggested that protein expression is not severely different by various environment, but different environment affects degree of protein expression.

재배환경에 따른 단백질 발현을 이차원전기영동을 이용하여 단백질 발현양상을 확인하고 이미지 분석을 통하여 단백질 발현 정도를 수치화하여 비교 분석한 결과, 재배환경에 따른 단백질 발현 양상은 전반적으로 매우 유사하였으며, 주요 단백질의 발현에는 차이가 없었다. 하지만 논과 밭, 즉 재배환경은 단백질의 발현 정도에는 영향을 미치는 것을 확인 할 수 있었다. 공시품종들 중에서 백천콩은 다른 세 품종과는 다르게 논에서 단백질 발현 정도가 밭에서의 단백질 발현 정도보다 높았다. 이 결과로 보아 품종마다 재배환경에 따른 단백질의 발현 정도에 차이가 있는 것으로 사료된다. 향후, 단백질 총 함량을 재배환경에 따라 비교하고 또한 질량분석을 통하여 증가 또는 감소되는 단백질의 기능을 확일 할 필요가 있다고 사료된다.

Keywords

References

  1. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem. 72 : 248-254.
  2. Cho, J. W., J. J. Lee, Y. J. Oh, J. D. So, and J. Y. W, C. H. Kim. 2006. Soybean growth and yield as affected by spacing of drainage furrows in paddy field. Korean J. Crop Sci. 51 : 26-31.
  3. Cho, S. W., S. J. Kwon, S. K. Roy, H. S. Kim, C. W. Lee, and S. H. Woo. 2014. A systematic proteome study of seed storage proteins from two soybean genotypes. Korean J. Crop Sci. 59 : 359-363. https://doi.org/10.7740/kjcs.2014.59.3.359
  4. Ishiguro, T., T. Ono, T. Wada, C. Tsukamoto, and Y. Kono. 2006. Changes in soybean phytate content as a result of field growing conditions and influence on tofu texture. Biosci. Biotechnol. Biochem. 70 : 874-880. https://doi.org/10.1271/bbb.70.874
  5. Jung, K. Y., E. Y. Yun, C. Y. Park, J. B. Hwang, Y. D. Choi, S. H. Jeon, and H. A. Lee. 2012. Effect of soil compaction levels and textures on soybean (Glycine max L.) root elongation and yield. Korean J. Soil Sci. Fert. 45 : 332-338. https://doi.org/10.7745/KJSSF.2012.45.3.332
  6. Kim, D. H., G. Y. Lee, N. M. Kim, and J. S. Lee. 2003. Physiological functionality of various extracts from danmemil and legumes. Korean J. Food & Nutr. 16 : 347-352.
  7. Kim, S. L., K. Y. Park, Y. H. Lee, and Y. H. Ryu. 2004. Seed quality of soybean produced from upland and drained-paddy field. Korean J. Crop Sci. 49 : 309-315.
  8. Kim, Y. K. and J. H. Cho. 2005. Growth and yields of Korean soybean cultivars in drained-paddy field. Korean J. Crop Sci. 50 : 161-169.
  9. Lee, S. Y., J. S. Eom, and H. S. Choi. 2014. Quality characteristics of fermented soybean products by Bacillus sp. Isolated from traditional soybean paste. J. Korean Soc. Food Sci. Nutr. 43 : 756-762. https://doi.org/10.3746/jkfn.2014.43.5.756
  10. Lee, S., Y. B. Lee, and H. S. Kim. 2013. Analysis of the general and functional components of various soybeans. J. Korean Soc. Food Sci. Nur. 42 : 1255-1262. https://doi.org/10.3746/jkfn.2013.42.8.1255
  11. O'Farrell, P. F. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250 : 4007-4021.
  12. Rahman, Md. M., Md. M. Hossain, Md. P. Anwar, and A. S. Juraimi. 2011. Plant density influence on yield and nutritional quality of soybean seed. Asian J. of Plant Sci. 10 : 125-132. https://doi.org/10.3923/ajps.2011.125.132
  13. Shimada, S., M. Kokubun, and S. Matsui. 1995. Effects of water table on physiological traits and yield of soybean. Japan. J. Crop Sci. 64 : 294-303. https://doi.org/10.1626/jcs.64.294
  14. STATISTICS KOREA http://www.kostat.go.kr, http://www.index.go.kr/
  15. Taira, H., H. Taira, E. Ozawa, and K. Sasaki. 1977. Chemical composition of soybean seeds by drained paddy field culture. Japan. J. Crop Sci. 46 : 103-110. https://doi.org/10.1626/jcs.46.103
  16. Woo, S. H., H. S. Kim, B. H. Song, C. W. Lee, Y. M. Park, S. K. Jong, and Y. G. Cho. 2003. Rice proteomics: A functional analysis of the rice genome and application. Reprintes from Korea Journal of Plant Biotechnology 30(3) : 281-291. https://doi.org/10.5010/JPB.2003.30.3.281