References
- Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS. Environmental fate of triclosan in the River Aire Basin, UK. Water Res. 2003;37:3145-3154. https://doi.org/10.1016/S0043-1354(03)00164-7
- Schweizer HP. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 2001;202:1-7. https://doi.org/10.1111/j.1574-6968.2001.tb10772.x
- Latch DE, Packer JL, Arnold WA, McNeill K. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J. Photochem. Photobiol. A Chem. 2003;158: 63-66. https://doi.org/10.1016/S1010-6030(03)00103-5
- Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F. Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 2000;66:4157-4160. https://doi.org/10.1128/AEM.66.9.4157-4160.2000
- Foran CM, Bennett ER, Benson WH. Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar. Environ. Res. 2000;50:153-156. https://doi.org/10.1016/S0141-1136(00)00080-5
- Braoudaki M, Hilton AC. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E.coli O157. FEMS Microbiol. Lett. 2004;235: 305-309. https://doi.org/10.1111/j.1574-6968.2004.tb09603.x
- Chen X, Casas ME, Nielsen JL, Wimmer R, Bester K. Identification of triclosan-o-sulfate and other transformation products of triclosan formed by activated sludge. Sci. Total Environ. 2015;505:39-46. https://doi.org/10.1016/j.scitotenv.2014.09.077
- McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 2002;21:1323-1329. https://doi.org/10.1002/etc.5620210701
- Singer H, Mueller S, Tixier C, Pillonel L. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 2002;36: 4998-5004. https://doi.org/10.1021/es025750i
- Lee DG, Zhao F, Rezenom YH, Russell DH, Chu KH. Biodegradation of triclosan by a wastewater microorganism. Water Res. 2012;46:4226-4234. https://doi.org/10.1016/j.watres.2012.05.025
- Lee DG, Cho KC, Chu KH. Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. Biodegradation 2014;25:55-65. https://doi.org/10.1007/s10532-013-9640-7
- Lee DG, Chu KH. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. Chemosphere 2013;93:1904-1911. https://doi.org/10.1016/j.chemosphere.2013.06.069
- Roh H, Subramanya N, Zhao F, Yu CP, Sandt J, Chu KH. Biodegradation potential of wastewater micropollutants by ammonia- oxidizing bacteria. Chemosphere 2009;77:1084-1089. https://doi.org/10.1016/j.chemosphere.2009.08.049
- Hay AG, Dees PM, Sayler GS. Growth of a bacterial consortium on triclosan. FEMS Microbiol. Lett. 2001;36:105-112. https://doi.org/10.1111/j.1574-6941.2001.tb00830.x
- Tastan BE, Donmez G. Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic. Biochem. Physiol. 2015;118:33-37. https://doi.org/10.1016/j.pestbp.2014.11.002
- Yu CP, Ahuja R, Sayler G, Chu KH. Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Appl. Environ. Microbiol. 2005;71:1433-1444. https://doi.org/10.1128/AEM.71.3.1433-1444.2005
- Harms G, Layton AC, Dionisi HM, et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 2003;37:343-351. https://doi.org/10.1021/es0257164
- Hermansson A, Lindgren PE. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl. Environ. Microbiol. 2001;67:972-976. https://doi.org/10.1128/AEM.67.2.972-976.2001
- Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704-4712.
- Hoshino T, Terahara T, Tsuneda S, Hirata A, Inamori Y. Molecular analysis of microbial population transition associated with the start of denitrification in a wastewater treatment process. J. Appl. Microbiol. 2005;99:1165-1175. https://doi.org/10.1111/j.1365-2672.2005.02698.x
- Araki N, Yamaguchi T, Yamazaki S, Harada H. Quantification of amoA gene abundance and their amoA mRNA levels in activated sludge by real-time PCR. Water Sci. Technol. 2004; 50:1-8.
- Geets J, De Cooman M, Wittebolle L, et al. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl. Microbiol. Biotechnol. 2007;75:211-221. https://doi.org/10.1007/s00253-006-0805-8
- Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 2001;55:485-529. https://doi.org/10.1146/annurev.micro.55.1.485
- Painter H, Loveless J. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated- sludge process. Water Res. 1983;17:237-248. https://doi.org/10.1016/0043-1354(83)90176-8
- Zhang T, Jin T, Yan Q, et al. Occurrence of ammonia-oxidizing archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J. Appl. Microbiol. 2009;107: 970-977. https://doi.org/10.1111/j.1365-2672.2009.04283.x
- Park HD, Wells GF, Bae H, Criddle CS, Francis CA. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 2006;72:5643-5647. https://doi.org/10.1128/AEM.00402-06
- Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour. Technol. 2011;102:3694-3701. https://doi.org/10.1016/j.biortech.2010.11.085
-
Roh H, Chu KH. A
$17{\beta}$ -estradiol-utilizing bacterium, Sphingomonas strain KC8: part I - characterization and abundance in wastewater treatment plants. Environ. Sci. Technol. 2010;44:4943-4950. https://doi.org/10.1021/es1001902
Cited by
- Triclosan in water, implications for human and environmental health vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-3287-x
- Performance and mechanism of triclosan removal in simultaneous nitrification and denitrification (SND) process under low-oxygen condition vol.101, pp.4, 2017, https://doi.org/10.1007/s00253-016-7952-3
- Determination and ecological risk assessment of two endocrine disruptors from River Buffalo, South Africa vol.192, pp.12, 2015, https://doi.org/10.1007/s10661-020-08717-0