JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 4, November 2015 http://dx.doi.org/10.14403/jcms.2015.28.4.561

SYMMETRIC BI-DERIVATIONS OF BCH-ALGEBRAS

Kyung Ho Kim*

ABSTRACT. The aim of this paper is to introduce the notion of leftright (resp. right-left) symmetric bi-derivation of *BCH*-algebras and some related properties are investigated.

1. Introduction

In 1966, Imai and Iseki introduced two classes of abstract algebras, BCK-algebra and BCI-algebras [6]. It is known that the class of BCI-algebras is a generalization of the class of BCK-algebras In 1983, Hu and Li [3] introduced the notion of a BCH-algebra, which is a generalization of the notions of BCK-algebras and BCI-algebras. They have studied a few properties of these algebras. In this paper, we introduce the notion of left-right (resp. right-left) symmetric bi-derivations of BCH algebras and investigate some properties of symmetric bi-derivations in a BCH-algebra. Moreover, we prove that the set of all symmetric bi-derivations on a medial BCH-algebra forms a semigroup under a suitably defined binary composition.

2. Preliminary

By a *BCH-algebra*, we mean an algebra (X, *, 0) with a single binary operation "*" that satisfies the following identities for any $x, y, z \in X$: (BCH1) x * x = 0,

(DCIII) x * x = 0,

(BCH2) x * y = 0 and y * x = 0 imply x = y,

(BCH3) (x * y) * z = (x * z) * y, where $x \le y$ if and only if $x^*y=0$.

In a *BCH*-algebra, the following identities are true for all $x, y \in X$:

Received July 17, 2015; Accepted October 26, 2015.

2010 Mathematics Subject Classification: Primary 03G25, 06B10, 06D99, 06B35, 06B99.

Key words and phrases: *BCH*-algebra, left (resp. right) symmetric bi-derivation, componentwise regular, d-regular.

This was supported by Korea National University of Transportation in 2015.

 $\begin{array}{ll} (\mathrm{BCH4}) & (x*(x*y))*y=0, \\ (\mathrm{BCH5}) & x*0=0 \text{ implies } x=0, \\ (\mathrm{BCH6}) & 0*(x*y)=(0*x)*(0*y), \\ (\mathrm{BCH7}) & x*0=x, \\ (\mathrm{BCH8}) & (x*y)*x=0*y, \\ (\mathrm{BCH8}) & x*y=0 \text{ implies } 0*x=0*y. \end{array}$

DEFINITION 2.1. Let I be a nonempty subset of a BCH-algebra X. Then I is called an *ideal* of X if it satisfies:

$$\begin{array}{ll} \text{(i)} \ 0 \in I, \\ \text{(ii)} \ x \ast y \in I \ \text{and} \ y \in I \ \text{imply} \ x \in I. \end{array}$$

DEFINITION 2.2. A BCH-algebra is said to be medial if it satisfies

$$(x * y) * (z * w) = (x * z) * (y * w)$$

for all x, y, z, w.

In a medial *BCH*-algebra, the following identity hold: (BCH10) x * (x * y) = y for all $x, y \in X$.

DEFINITION 2.3. A *BCH*-algebra X is said to be *commutative* if y * (y * x) = x * (x * y) for all $x, y \in X$. For a *BCH*-algebra X, we denote $x \wedge y = y * (y * x)$ for all $x, y \in X$.

DEFINITION 2.4. Let X be a *BCH*-algebra. A map $d : X \to X$ is a *left-right derivation* (briefly, (l, r)-*derivation*) of X if it satisfies the identity

$$d(x * y) = (d(x) * y) \land (x * d(y))$$

for all $x, y \in X$. If d satisfies the identity

$$d(x * y) = (x * d(y)) \land (d(x) * y)$$

for all $x, y \in X$, then d is a right-left derivation (briefly, (r, l)-derivation) of X. Moreover, if d is both an (l, r) and (r, l)-derivation of X, then d is a derivation of X.

DEFINITION 2.5. A *BCH*-algebra is said to be it associative if (x * y) * z = x * (y * z) for all $x, y, z \in X$.

DEFINITION 2.6. For any *BCH*-algebra, we define the set G(X) by as follows

$$G(X) = \{x \in X | 0 * x = x\}.$$

DEFINITION 2.7. Let X be a *BCH*-algebra. Then the set $X_+ = \{x \in X | 0 * x = 0\}$ is called a *BCA-part* of X.

3. Symmetric bi-derivations of BCH-algebras

In what follows, let X denote a BCH-algebra unless otherwise specified.

DEFINITION 3.1. Let X, *, 0 be a *BCH*-algebra. Define a binary composition "+" on X as follows:

$$x + y = x * (0 * y)$$

for any $x, y \in X$.

THEOREM 3.2. In any medial BCH-algebra (X, *, 0), if we define "+" as x + y = x * (0 * y) for any $x, y \in X$, Then the following properties hold:

(1) x + 0 = x = 0 + x,

(2) Addition is associative,

(3) Addition is commutative,

(4) Additive inverse of x is 0 * x.

Proof. (1) Let X be a medial *BCH*-algebra and $x \in X$. Then

x + 0 = x * (0 * 0) = x * 0 = x = 0 * (0 * x) = 0 + x.

(2) Applying the definition of "+" repeatedly and simplifying, we have the result.

(3) For any
$$x, y \in X$$
,
 $x + y = 0 + (x + y) = (y * y) + (x * (0 * y))$
 $= (y * y) * (0 * (x * (0 * y)))$
 $= (y * y) * ((0 * x) * (0 * (0 * y)))$ $((x * y) * z = (x * z) * y)$
 $= (y * y) * ((0 * x) * y)$ $(y * (y * x) = x)$
 $= (y * (0 * x)) * (y * y) = y * (0 * x)$
 $= y * (0 * x) = y + x$

(4) For any $x \in X$,

$$x + (0 * x) = x * (0 * (0 * x)) = x * x = 0.$$

Hence the additive inverse of x is written as as -x = 0 * x.

DEFINITION 3.3. Let X be a medial *BCH*-algebra. If we define an addition "+" as x + y = x * (0 * y) for all $x, y \in X$, then (X, +) is an abelian group with identity 0 and the additive inverse denoted by -x = 0 * x for any $x \in X$.

If we have a medial BCH-algebra (X, *, 0), it follows from the above definition that (X, +) is an abelian group with -y = 0 * y for any $y \in X$. Then we have x - y = x * y for any $x, y \in X$. On the other hand, if we choose an abelian group (X, +) with an identity 0 and define x * y = x - y, we obtain a medial BCH-algebra (X, *, 0) where x + y = x * (0 * y) for any $x, y \in X$.

Since x + (0 * y) = x * (0 * (0 * y)) = x * y, for all $x, y \in X$, we have x * y = x + (0 * y) = x - y.

DEFINITION 3.4. Let X, Y be BCH-algebras. An operation * on the Cartesian product $X \times X$ of X, Y as follows: For $x_1, x_2 \in X, y_1, y_2 \in Y$,

1. $(x_1, y_1) * (x_2, y_2) = (x_1 * x_2, y_1 * y_2),$

2. (0,0) = 0.

LEMMA 3.5. A cartesian product of two BCH-algebras is again a BCH-algebras.

Proof. (1) For all $(x, y) \in X \times Y$, we have (x, y) * (x, y) = (x * x, y * y) = (0, 0).

(2) For any $(x_1, y_1), (x_2, y_2) \in X \times Y$, let $(x_1, y_1) * (x_2, y_2) = (0, 0)$ and $(x_2, y_2) * (x_1, y_1) = (0, 0)$. Then we have $x_1 * x_2 = 0$ and $x_2 * x_1 = 0$, which means that $x_1 = x_2$. Also, $y_1 * y_2 = 0$ and $y_2 * y_1 = 0$. Thus we get $y_1 = y_2$. Hence $(x_1, y_1) = (x_2, y_2)$.

(3) For any $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X \times Y$, we get $((x_1, y_1) * (x_2, y_2)) * (x_3, y_3) = ((x_1 * x_2) * x_3, (y_1 * y_2 *) * y_3) = ((x_1 * x_3) * x_2, (y_1 * y_3) * y_2) = ((x_1, y_1) * (x_3, y_3)) * (x_2, y_2).$

DEFINITION 3.6. Let X be a *BCH*-algebra. A map $D: X \times X \to X$ is a *symmetric map* if D(x, y) = D(y, x) holds for all pairs of elements $x, y \in X$.

EXAMPLE 3.7. Let $X = \{0, 1, 2, 3\}$ be a *BCH*-algebra with Cayley table as follows:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

The map $D: X \times X \to X$ defined by D(x, y) = x * (0 * y) is a symmetric map.

DEFINITION 3.8. Let X be a *BCH*-algebra and let $D: X \times X \to X$ be a symmetric mapping. A mapping $d: X \to X$ defined by d(x) = D(x, x)is called a *trace* of D.

EXAMPLE 3.9. In Example 3.4, d(0) = D(0,0) = 0 + 0 = 0, d(1) = D(1,1) = 1 + 1 = 0, d(2) = D(2,2) = 2 + 2 = 0, d(3) = D(3,3) = 3 + 3 = 0.

DEFINITION 3.10. Let X be a *BCH*-algebra and let $D: X \times X \rightarrow X$ be a symmetric mapping. If D satisfies the identity, $D(x * y, z) = (D(x, z) * y) \wedge (x * D(y, z))$ for all $x, y, z \in X$, then D is called a *left-right symmetric bi-derivation* (briefly, (l, r)-symmetric bi-derivation) of X.

If D satisfies the identity, $D(x * y, z) = (x * D(y, z)) \land (D(x, z) * y)$ for all $x, y, z \in X$, then D is called a *right-left symmetric bi-derivation* (briefly, (r, l)-symmetric bi-derivation) of X.

If D is both an (l, r)-symmetric bi-derivation and an (r, l)-symmetric bi-derivation, then D is called a symmetric bi-derivation of X.

EXAMPLE 3.11. In Example 3.4, define a mapping $D: X \times X \to X$ by D(x, y) = x * (0 * y) for all $x, y \in X$. Then D is a symmetric bi-derivation of X.

EXAMPLE 3.12. Let $X = \{0, 1, 2\}$ be a *BCH*-algebra with Cayley table as follows:

Define a map $D: X \times X \to X$ by

$$D(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ 0 & \text{if } (x,y) = (0,1) \\ 0 & \text{if } (x,y) = (1,0) \\ 2 & \text{if } (x,y) = (0,2) \\ 2 & \text{if } (x,y) = (2,0) \\ 1 & \text{if } (x,y) = (1,1) \\ 0 & \text{if } (x,y) = (2,2) \\ 2 & \text{if } (x,y) = (2,1) \\ 2 & \text{if } (x,y) = (1,2) \end{cases}$$

Then it is easily checked that D is a symmetric bi-derivation of X.

PROPOSITION 3.13. Let X be a medial BCH-algebra. Define a symmetric map $D: X \times X \to X$ by D(x, y) = x + y for all $x, y \in X$. Then D is a (l, r)-symmetric bi-derivation of X.

Proof. For all $x, y, z \in X$, we have

$$\begin{split} D(x*y,z) &= (x*y) + z = (x*y)*(0*z) \\ &= (x*(0*z))*y = (x+z)*y \quad (\because (x*y)*z = (x*z)*y) \\ &= (x*(y+z))*((x*(y+z))*((x+z)*y)) \\ &\qquad (\because y*(y*x) = x) \\ &= ((x+z)*y) \wedge (x*(y+z)) \\ &= (D(x,z)*y) \wedge (x*(D(y,z)). \end{split}$$

This proves that D is a (l, r)-symmetric bi-derivation of X.

THEOREM 3.14. Let X be an associative medial BCH-algebra. Then the symmetric map $D: X \times X \to X$ defined by D(x, y) = x + y for all $x, y \in X$ is a symmetric bi-derivation of X.

Proof. By the above proposition, D is a (l, r)-symmetric bi-derivation of X. For all $x, y, z \in X$, we have

$$D(x * y, z) = (x * y) + z = (x * y) * (0 * z)$$

= $(x * (0 * z)) * y = ((x * 0) * z) * y$ (:: X is associative)
= $(x * z) * y = (x * y) * z$. (1)

Also, we have for any $x, y, z \in X$,

$$(x * D(y, z)) \land (D(x, z) * y) = x * D(y, z) \qquad (\because x \land y = y * (y * x) = x)$$
$$= x * (y + z) = x * (y * (0 * z))$$
$$= x * ((y * 0) * z) \qquad (\because X \text{ is associative})$$
$$= x * (y * z)$$
$$= (x * y) * z. \qquad (2) \quad (\because X \text{ is associative})$$

From (1) and (2), $D(x * y), z) = (x * D(y, z)) \land (D(x, z) * y)$ for all $x, y, z \in X$. This proves that D is a (r, l)-symmetric bi-derivation, and so a symmetric bi-derivation of X.

PROPOSITION 3.15. Let X be a medial BCH-algebra and let D be a symmetric map. Then we have for any $x \in X$,

- (1) if D is a (l, r)-symmetric bi-derivation of X and (x * z) * (y * z) = x * y, then $D(x, y) = D(x, y) \land x$,
- (2) if D is a (r, l)-symmetric bi-derivation of X, then $D(x, y) = x \land D(x, y)$ for all $x, y \in X$ if and only if D(0, y) = 0 for all $x \in X$.

566

 $\mathit{Proof.}$ (1) Let D be a (l,r)-symmetric bi-derivation of X. Then we have

(2) Let D be a (r, l)-symmetric bi-derivation of X and D(0, y) = 0 for all $y \in X$. Then we have

$$D(x, y) = D(x * 0, y)$$

= $(x * D(0, y)) \land (D(x, y) * 0)$
= $(x * 0) \land D(x, y)$
= $x \land D(x, y)$.

Conversely, if $D(x, y) = x \wedge D(x, y)$ for all $x, y \in X$, then

$$D(0, y) = 0 \land D(0, y)$$

= $D(0, y) * (D(0, y) * 0)$
= $D(0, y) * D(0, y) = 0.$

PROPOSITION 3.16. Let X be a medial BCH-algebra and let D: $X \times X \to X$ be a (l, r)-symmetric bi-derivation of X. Then

(1) D(a, y) = D(0, y) * (0, a) = D(0, y) + a for all $a, x, y \in X$, (2) D(a + b, y) = D(a, y) + D(b, y) - D(0, y) for all $a, b, x, y \in X$, (3) D(a, y) = a if and only if D(0, y) = 0 for all $a, y \in X$.

Proof. (1) Let (l, r)-symmetric bi-derivation of X and let a = 0 * (0 * a). Then we have

$$\begin{aligned} D(a,y) &= D(0*(0*a),y) \\ &= (D(0,y)*(0*a)) \land (0*D(0*a,y)) \\ &= D(0,y)*(0*a) \qquad (\because x \land y = x) \\ &= D(0,y) + a \end{aligned}$$

for for any $a, x, y \in X$,

(2) By (1), we get for any $a, b, y \in X$,

$$D(a + b, y) = D(0, y) + a + b$$

= D(0, y) + a + D(0, y) + b - D(0, y)
= D(a, y) * D(b, y) - D(0, y).

(3) Let D(a, y) = a for any $a, y \in X$. Putting a = 0, then we get D(0, y) = 0 for any $y \in X$. Conversely, if D(0, y) = 0, then D(a, y) = D(0, y) + a = 0 + a = a.

PROPOSITION 3.17. Let X be a medial BCH-algebra and let D: $X \times X \to X$ be a (r, l)-symmetric bi-derivation of X. Then (1) $D(a, y) \in G(X)$ for any $a \in G(X)$, (2) D(a, y) = a * D(0, y) = a + D(0, y) for any $a, y \in X$, (3) D(a + b, y) = D(a, y) + D(b, y) - D(0, y) for all $a, b, y \in X$,

(4) D(a, y) = a for any $a, y \in X$ if and only if D(0, y) = 0.

Proof. (1) Let $a \in G(X)$. Then 0 * a = a, and so

$$D(a, y) = D(0 * a, y)$$

= $(0 * (D(a, y)) \land (D(0, y) * a)$
= $(D(0, y) * a) * ((D(0, y) * a) * (0 * D(a, y)))$
= $0 * D(a, y).$

This implies that $D(a, y) \in G(X)$.

(2) For any $a, y \in X$, we get

$$D(a, y) = D(a * 0, y)$$

= $(a * (D(0, y)) \land (D(a, y) * 0)$
= $(a * (D(0, y)) \land D(a, y)$
= $D(a, y) * (D(a, y) * (a * D(0, y)))$
= $a * D(0, y).$

Again, for any $a, y \in X$, we get D(a, y) = a * D(0)

$$\begin{aligned} (a,y) &= a * D(0,y) \\ &= (a * (D(0,y)) \land (D(a,y) * 0) \\ &= a * D(0 * (D(0,y)) \land (D(0,y) * 0) \\ &= a * (0 * D(0,y)) \\ &= a + D(0,y). \end{aligned}$$

(3) For any a, b, y, we have

$$D(a + b, y) = a + b + D(0, y)$$

= $a + D(0, y) + b + D(0, y) - D(0, y)$
= $D(a, y) + D(b, y) - D(0, y).$

(4) If D(0,y) = 0, then D(a, y) = D(a * 0, y) = a * D(0, y) = a * 0 = aby (2). Conversely, if D(a, y) = a for any $a \in X$, we get D(0, y) = 0. \Box

DEFINITION 3.18. Let X be a *BCH*-algebra and let $D: X \times X \to X$ be a symmetric mapping. If D(0, z) = 0, for all $z \in X$, D is called *componentwise regular*. In particular, if D(0, 0) = d(0) = 0, D is called *d*-regular.

PROPOSITION 3.19. Let D be a (r, l)-symmetric bi-derivation of X and 0 * x = 0 for all $x \in X$. Then D is d-regular.

Proof. Let D be a system bi-derivation of X and 0 * x = 0 for all $x \in X$. Then we have

$$D(0,0) = D(0 * x, 0) = (0 * D(x,0)) \land (D(0,0) * x)$$

= 0 \land (D(0,0) * x)
= 0

Hence D is d-regular.

THEOREM 3.20. Let D be an (l, r)-symmetric bi-derivation of X. If there exists $a \in X$ such that D(x, z) * a = 0 for all $x, z \in X$, then D is componentwise regular.

Proof. Let
$$D(x, y) * a = 0$$
 for all $x, z \in X$. Then
 $0 = D(x * a, z) * a = ((D(x * z) * a) \land (D(0, 0) * x) * a)$
 $= (0 \land (D(0, 0) * x)) * a$
 $= 0 * a,$

that is, $0 \leq a$, and so

$$D(0, z) = D(0 * a, z)$$

= $(D(0, z) * a) \land (0 * D(a, z))$
= $0 \land (0 * D(a, z)) = 0.$

Hence d is componentwise regular.

COROLLARY 3.21. Let D be an (l, r)-symmetric bi-derivation of X. If there exists $a \in X$ such that D(x, z) * a = 0 for all $x, z \in X$, then D is d-regular.

THEOREM 3.22. Let D be an (r, l)-symmetric bi-derivation of X. If there exists $a \in X$ such that a * D(x, z) = 0 for all $x, z \in X$, then D is componentwise regular.

Proof. Let
$$D(x, y) * a = 0$$
 for all $x, z \in X$. Then
 $0 = a * D(x * a, z) = a * ((a * D(x * z)) \land (D(a, z) * x))$
 $= a * (0 \land (D(a, z) * x))$
 $= a * 0,$

This shows that

$$D(0, z) = D(a * 0, z)$$

= $(a * D(0, z)) \land (D(a, z) * 0)$
= $0 \land D(a, z) = 0.$

Hence D is componentwise regular.

COROLLARY 3.23. Let D be an (r, l)-symmetric bi-derivation of X. If there exists $a \in X$ such that a * D(x, z) = 0 for all $x, z \in X$, then D is d-regular.

Let D be a symmetric bi-derivation of X and $a \in X$. Define a set $Fix_a(X)$ by

$$Fix_a(X) := \{x \in X \mid D(x,a) = x\}$$

for all $x \in X$.

PROPOSITION 3.24. Let D be a symmetric bi-derivation of X. Then $Fix_a(X)$ is a subalgebra of X.

Proof. Let $x, y \in Fix_a(X)$. Then we have D(x, a) = x and D(y, a) = y, and so

$$D(x * y, a) = (D(x, a) * y) \land (x * D(y, a))$$

= $(x * y) \land (x * y)$
= $(x * y) * ((x * y) * (x * y))$
= $(x * y) * 0 = x * y.$

Hence we get $x * y \in Fix_a(X)$. This completes the proof.

PROPOSITION 3.25. Let D be a symmetric bi-derivation of X. If $x, y \in Fix_a(X)$, we obtain $x \wedge y \in Fix_a(X)$.

570

Proof. Let $x, y \in Fix_a(X)$. Then we have D(x, a) = x and D(y, a) = y, and so

$$\begin{aligned} D(x \wedge y, a) &= D(y * (y * x), a) = (D(y, a) * (y * x)) \wedge (y * D(y * x, a)) \\ &= (y * (y * x)) \wedge (y * ((D(y * a) * x) \wedge (y * D(x, a)))) \\ &= (y * (y * x)) \wedge (y * ((y * x) \wedge (y * x))) \\ &= y * (y * x) \wedge y * (y * x) \\ &= y * (y * x) - x \wedge y. \end{aligned}$$

Hence we get $x \wedge y \in Fix_a(X)$. This completes the proof.

PROPOSITION 3.26. Let X be a commutative BCH-algebra and d a trace of D. Then, if $x \leq y$ for all $x, y \in X$, then $d(x \wedge y) = d(x)$.

Proof. Let
$$x \leq y$$
. Then we get $x * y = 0$ and
 $d(x \wedge y) = D(x \wedge y, x \wedge y)$
 $= D(y * (y * x), y * (y * x))$
 $= D(x * (x * y), x * (x * y))$
 $= D(x, x) = d(x).$

This completes the proof.

DEFINITION 3.27. Let X be a *BCH*-algebra. A self-map d on X is said to be *isotone* if $x \leq y$ implies $d(x) \leq d(y)$ for $x, y \in X$.

Let Der(X) denote the set of all (l, r)-symmetric bi-derivation on X. Define the binary operation " \wedge " on Der(X) as follows:

$$(D_1 \wedge D_2)(x, y) = D_1(x * y) \wedge D_2(x, y)$$

for any $D_1, D_2 \in Der(X)$ and $x, y \in X$.

PROPOSITION 3.28. Let D_1 and D_2 are (l, r)-symmetric bi-derivations on X. Then $D_1 \wedge D_2$ is also a (l, r)-symmetric bi-derivation of X.

Proof. Let
$$D_1$$
 and D_2 are (l, r) -symmetric bi-derivations on X . Then
 $(D_1 \wedge D_2)(x * y, z) = ((D_1 \wedge D_2)(x, z) * y) \wedge (x * ((D_1 \wedge D_2)(y, z))).$
 $(D_1 \wedge D_2)(x * y, z) = D_1(x * y, z) \wedge D_2(x * y, z)$
 $= D_2(x * y, z) * (D_2(x * y, z) * D_1(x * y, z))$
 $= D_1(x * y, z)$
 $= (D_1(x, z) * y) \wedge (x * D_1(y, z))$
 $= (x * D_1(y, z)) * ((x * D_1(y, z)) * (D_1(x, z) * y))$
 $= D_1(x, z) * y$ (1)

$$\begin{aligned} &((D_1 \wedge D_2)(x, z) * y) \\ &= (x * (D_1 \wedge D_2)(y, z) * ((x * (D_1 \wedge D_2)(y, z)) * ((D_1 \wedge D_2)(x, z) * y)) \\ &= (D_1(x, z) \wedge D_2(x * y, z) * (D_2(x * y, z) * D_1(x * y, z)) \\ &= D_1(x * y, z) \\ &= (D_1(x, y, z) \\ &= (D_1 \wedge D_2)(x, z) * y \\ &= (D_1(x, z) \wedge D_2(x, z)) * y \\ &= (D_2(x, z) * (D_2(x, z) * D_1(x, z))) * y \\ &= D_1(x, z) * y \end{aligned}$$
(2)

Combining (1) and (2), we prove that $D_1 \wedge D_2$ is a (l, r)-symmetric bi-derivation of X.

PROPOSITION 3.29. The binary composition " \wedge " defined on Der(X) is associative.

Proof. Let D_1, D_2 and D_2 are (l, r)-symmetric bi-derivations on X. Then

$$\begin{aligned} &((D_1 \wedge D_2) \wedge D_3)(x * y, z) \\ &= ((D_1 \wedge D_2)(x * y, z)) \wedge D_3)(x * y, z)) \\ &= (D_1(x, z) * y) \wedge D_3(x * y, z)) \\ &= (D_3(x * y, z) * (D_3(x, z) * D_1(x, z) * y)) \\ &= D_1(x, z) * y \end{aligned}$$
(1)

$$(D_1 \wedge (D_2 \wedge D_3))(x * y, z)$$

= $(D_1(x * y, z)) \wedge ((D_2 \wedge D_3)(x * y, z))$
= $(D_1(x * y, z)) \wedge (D_2(x, z) * y)$
= $(D_2(x, z) * y) * ((D_2(x, z) * y) * (D_1(x * y, z)))$
= $D_1(x * y, z)$
= $(D_1(x, z) * y) \wedge (x * D_1(y, z))$
= $(x * D_1(y, z)) * ((x * D_1(y, z)) * (D_1(x, z) * y))$
= $D_1(x, z) * y.$ (1)

Combining (1) and (2), we have $(D_1 \wedge D_2) \wedge D_3 = D_1 \wedge (D_2 \wedge D_3)$, which implies that " \wedge " is associative.

Combining the above two propositions, we obtain the following theorem.

THEOREM 3.30. Der(X) is a semigroup under the binary composition " \wedge ".

References

- [1] M. A. Chaudhry, On BCH-algebras, Math. Japonica 36 (1991), no. 4, 665-676.
- [2] M. A. Chaudhry and H. Fakhar-ud-din, Ideals and Filter in BCH-algebras, Math. Japonica 44 (1996), no. 1, 101-112.
- [3] Q. P. Hu and X. Li, On BCH-algebra, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 313-320.
- [4] Q. P. Hu and X. Li, On proper BCH-algebra, Math. Japon. 30 (1985), no. 4, 659-661.
- [5] K. Iseki, An algebra related with a propositional calculus, Proc. Japon Acad. 42 (1966), 26-29.
- [6] Y. Imai and K. Iseki, On axiom system of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22.

*

Department of Mathematics Korea National University of Transportation Chungju 380-702, Republic of Korea *E-mail*: ghkim@ut.ac.kr