APPROXIMATION OF INTEGRATED SEMIGROUPS

Young Seop Lee*

Abstract

The purpose of this paper is to show an integrated semigroup on a Banach space can be approximated by a sequence of integrated semigroups acting on different Banach spaces.

1. Introduction

The initial value problem in a Banach space X

$$
u^{\prime}(t)=A u(t), \quad u(0)=x
$$

has been extensively studied if A is the generator of a C_{0} semigroup. Hille-Yosida theorem gives the necessary and sufficient conditions in order that A is the generator of a C_{0} semigroup [4]. One of these conditions is the density of the domain of A. But there are many examples that is formulated in the above problem without the density of the domain of A (see [3]). In this case the concept of integrated semigroup introduced by Arendt [1] is very useful to treat the above problem.

In this paper we study the approximation of an integrated semigroup on a Banach space X by a sequence of the integrated semigroups on Banach spaces X_{n}. In order to prove our result, we use Theorem 2.2 in [5] that the convergence of the sequence of functions $\left\{f_{n}:[0, \infty) \rightarrow X\right\}$ is equivalent to the convergence of their Laplace transforms and the equicontinuity of $\left\{f_{n}\right\}$.

Let X and X_{n} be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|_{n}, n=$ $1,2, \cdots$, respectively. For each n, there exist bounded linear operators $P_{n}: X \rightarrow X_{n}$ and $E_{n}: X_{n} \rightarrow X$ satisfying
(i) $\left\|P_{n}\right\| \leq M_{1}$ and $\left\|E_{n}\right\|_{n} \leq M_{2}$, where M_{1} and M_{2} are independent of n.

Received July 08, 2015; Accepted October 26, 2015.
2010 Mathematics Subject Classification: Primary 47D62; Secondary 47N40.
Key words and phrases: approximation, integrated semigroup.
This work was supported by a research grant from Seoul Women's University (2014).
(ii) $\lim _{n \rightarrow \infty}\left\|E_{n} P_{n} x-x\right\|=0$ for every $x \in X$.
(iii) $P_{n} E_{n}=I_{n}$, where I_{n} is the identity operator on X_{n}.

In general we do not have $X_{n} \subset X$. If one has numerical approximation in mind, then the spaces X_{n} are finite dimensional.

Throughout this paper, X is a Banach space and $B(X)$ is the space of all bounded linear operators from X to X. For a linear operator A, we denote the domain, the range, the resolvent set and the resolvent by $D(A), \operatorname{Ran}(A), \rho(A)$ and $R(\lambda, A)$, respectively.

2. Approximation

First we recall the definition of integrated semigroups.
Definition 2.1. A linear operator A on a Banach space X is called the generator of an integrated semigroup if there exist constants M, $\omega \geq 0$ and a strongly continuous function $S:[0, \infty) \rightarrow B(X)$ with $\|S(t)\| \leq M e^{\omega t}$ for all $t \geq 0$ such that $(\omega, \infty) \subset \rho(A)$ and $R(\lambda, A) x=$ $\lambda \int_{0}^{\infty} e^{-\lambda t} S(t) x d t$ for $\lambda>\omega$ and $x \in X$.

In this case, $\{S(t)\}_{t \geq 0}$ is called the integrated semigroup generated by A.

It is known in [2] that a closed linear operator A in X is the generator of a locally Lipschitz continuous integrated semigroup on X if and only if there exist constants $M, \omega \geq 0$ such that

$$
(\omega, \infty) \subset \rho(A) \text { and }\left\|(\lambda I-A)^{-k}\right\| \leq \frac{M}{(\lambda-\omega)^{k}}
$$

for $\lambda>\omega$ and $k \geq 1$, and every locally Lipschitz continuous integrated semigroup is exponentially bounded.

Main result of this paper is given by the following theorem.
Theorem 2.2. Let A be the generator of an integrated semigroup $\{S(t)\}_{t \geq 0}$ on X satisfying $\|S(t)\| \leq M e^{\omega t}$ for some constants $M, \omega \geq 0$ and all $t \geq 0$. Let $\left\{T_{n}\right\}$ be a sequence of linear operators with $T_{n} \in$ $B\left(X_{n}\right)$ and let $\left\{h_{n}\right\}$ be a positive null sequence with the following properties.
(i) $\left\|T_{n}\right\|_{n} \leq M e^{\omega k h_{n}}$ for $k \geq 0$ and $n \geq 1$.
(ii) For $x \in D(A)$ there exists a sequence $\left\{x_{n}\right\}$ with $x_{n} \in X_{n}$ such that $\lim _{n \rightarrow \infty} E_{n} x_{n}=x$ and $\lim _{n \rightarrow \infty} E_{n} A_{n} x_{n}=A x$, where $A_{n}=$ $\left(T_{n}-I_{n}\right) / h_{n}$.

Then

$$
\lim _{n \rightarrow \infty} \int_{0}^{t} E_{n} T_{n}^{\left[s / h_{n}\right]} P_{n} x d s=S(t) x \quad \text { for } x \in X
$$

and the convergence is uniform on bounded t-intervals, where $[r]$ is the integer part of $r \geq 0$.

Proof. Since $A_{n} \in B\left(X_{n}\right), A_{n}$ is the generator of a uniformly continuous semigroup $\left\{e^{t A_{n}}\right\}_{t \geq 0}$ on X_{n} and

$$
\begin{aligned}
\left\|e^{t A_{n}}\right\|_{n} & \leq e^{-t / h_{n}} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{t}{h_{n}}\right)^{k}\left\|T_{n}^{k}\right\|_{n} \\
& \leq M e^{t / h_{n}\left(e^{\omega h_{n}}-1\right)} \leq M e^{t e^{\omega}}
\end{aligned}
$$

Choose $a>e^{\omega}$. Then $\left\|e^{t A_{n}}\right\| \leq M e^{a t}$ for all $t \geq 0$. By Hille-Yosida theorem, $(a, \infty) \subset \rho\left(A_{n}\right)$ and $\left\|R\left(\lambda, A_{n}\right)\right\| \leq M /(\lambda-a)$ for $\lambda>a$.

For $y \in \operatorname{Ran}(\lambda I-A)$, there exists $x \in D(A)$ such that $y=(\lambda I-A) x$. By hypothesis there exist $x_{n} \in X_{n}$ such

$$
\lim _{n \rightarrow \infty} E_{n} x_{n}=x \text { and } \lim _{n \rightarrow \infty} E_{n} A_{n} x_{n}=A x
$$

Set $\left(\lambda I_{n}-A_{n}\right) x_{n}=y_{n}$. Then we have

$$
\lim _{n \rightarrow \infty} E_{n} y_{n}=\lim _{n \rightarrow \infty} E_{n}\left(\lambda I_{n}-A_{n}\right) x_{n}=(\lambda I-A) x=y
$$

So we have for $\lambda>a$

$$
\begin{aligned}
& \left\|E_{n} R\left(\lambda, A_{n}\right) P_{n} y-R(\lambda, A) y\right\| \\
& \leq\left\|E_{n} R\left(\lambda, A_{n}\right) P_{n} y-E_{n} R\left(\lambda, A_{n}\right) y_{n}\right\| \\
& \quad+\left\|E_{n} R\left(\lambda, A_{n}\right) y_{n}-R(\lambda, A) y\right\| \\
& \leq M_{2}\left\|R\left(\lambda, A_{n}\right) P_{n} y-R\left(\lambda, A_{n}\right) y_{n}\right\|_{n}+\left\|E_{n} x_{n}-x\right\| \\
& \leq \frac{M_{2} M}{\lambda-a}\left\|P_{n} y-y_{n}\right\|_{n}+\left\|E_{n} x_{n}-x\right\| \\
& =\frac{M_{2} M}{\lambda-a}\left\|P_{n} y-E_{n} P_{n} y_{n}\right\|_{n}+\left\|E_{n} x_{n}-x\right\| \\
& \leq \frac{M_{1} M_{2} M}{\lambda-a}\left\|y-E_{n} y_{n}\right\|+\left\|E_{n} x_{n}-x\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

By the density of $\operatorname{Ran}(\lambda I-A)$, we have

$$
\lim _{n \rightarrow \infty} E_{n} R\left(\lambda, A_{n}\right) P_{n} x=R(\lambda, A) x \text { for } x \in X
$$

Let $x \in X$. Then

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\lambda t} \int_{0}^{t} T_{n}^{\left[s / h_{n}\right]} P_{n} x d s d t \\
& =\int_{0}^{\infty} \int_{s}^{\infty} e^{-\lambda t} T_{n}^{\left[s / h_{n}\right]} P_{n} x d t d s \\
& =\frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda s} T_{n}^{\left[s / h_{n}\right]} P_{n} x d s \\
& =\frac{1}{\lambda} \sum_{k=0}^{\infty} \int_{k h_{n}}^{(k+1) h_{n}} e^{-\lambda s} T_{n}^{k} P_{n} x d s \\
& =\frac{1-e^{-\lambda h_{n}}}{\lambda^{2}} \sum_{k=0}^{\infty} e^{-\lambda k h_{n}} T_{n}^{k} P_{n} x \\
& =\frac{1-e^{-\lambda h_{n}}}{\lambda^{2}}\left(I_{n}-e^{-\lambda h_{n}} T_{n}\right)^{-1} P_{n} x \\
& =\frac{1-e^{-\lambda h_{n}}}{\lambda^{2}}\left(I_{n}-e^{-\lambda h_{n}}\left(I_{n}+h_{n} A_{n}\right)\right)^{-1} P_{n} x \\
& =\frac{1-e^{-\lambda h_{n}}}{\lambda^{2}} \frac{e^{\lambda h_{n}}}{h_{n}}\left(\frac{e^{\lambda h_{n}}-1}{h_{n}} I_{n}-A_{n}\right)^{-1} P_{n} x .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{\infty} e^{-\lambda t} \int_{0}^{t} E_{n} T_{n}^{\left[s / h_{n}\right]} P_{n} x d s d t \\
& =\lim _{n \rightarrow \infty} \frac{1-e^{-\lambda h_{n}}}{\lambda^{2}} \frac{e^{\lambda h_{n}}}{h_{n}} E_{n}\left(\frac{e^{\lambda h_{n}}-1}{h_{n}} I_{n}-A_{n}\right)^{-1} P_{n} x \\
& =\frac{1}{\lambda}(\lambda I-A)^{-1} x=\int_{0}^{\infty} e^{-\lambda t} S(t) x d t
\end{aligned}
$$

We have proved that the Laplace transforms of $\int_{0}^{t} E_{n} T_{n}^{\left[s / h_{n}\right]} P_{n} x d s$ converge to the Laplace transform of the integrated semigroup $\{S(t)\}_{t \geq 0}$.

Next we will show the equicontinuity of $\left\{\int_{0}^{t} E_{n} T_{n}^{\left[s / h_{n}\right]} P_{n} x d s\right\}$. For $0 \leq s<t \leq T$,

$$
\begin{aligned}
& \left\|\int_{0}^{t} T_{n}^{\left[r / h_{n}\right]} P_{n} x d r-\int_{0}^{s} T_{n}^{\left[r / h_{n}\right]} P_{n} x d r\right\|_{n} \\
& =\left\|\int_{s}^{t} T_{n}^{\left[r / h_{n}\right]} P_{n} x d r\right\|_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{s}^{t} M e^{\omega\left[r / h_{n}\right] h_{n}}\left\|P_{n} x\right\|_{n} d r \\
& \leq M \int_{s}^{t} e^{\omega r} d r\left\|P_{n} x\right\|_{n} \\
& \leq M e^{\omega T}\left\|P_{n}\right\|_{n}|t-s|
\end{aligned}
$$

Hence $\left\{\int_{0}^{t} E_{n} T_{n}^{\left[s / h_{n}\right]} P_{n} x d s\right\}$ is equicontinuous. By Theorem 2.2 in [5] we have the result.

Example 2.3. Let $X=C([0,1])$ with the supremum norm and let $A: D(A) \subset X \rightarrow X$ be a linear operator defined by $A u=-u^{\prime}$ with $D(A)=\left\{u \in X: u(0)=0, u^{\prime} \in X\right\}$.

Then the closure of $D(A)$ is $C_{0}([0,1])$, which is not dense in X. For $\lambda>0$ and $v \in X$, define

$$
u(t)=\int_{0}^{t} e^{-\lambda s} v(t-s) d s, \quad t \in[0,1]
$$

Then $u \in D(A),(\lambda I-A) u=v$ and

$$
\begin{aligned}
|u(t)| & \leq \int_{0}^{t} e^{-\lambda s}|v(t-s)| d s \\
& \leq\|v\| \int_{0}^{t} e^{-\lambda s} d s \leq \frac{1}{\lambda}\|v\|
\end{aligned}
$$

So $(0, \infty) \subset \rho(A)$ and $\|R(\lambda, A)\| \leq 1 / \lambda$, that is, A is a Hille-Yosida operator. By Theorem 2.4 in [2], A is the generator of an integrated semigroup $\{S(t)\}_{t \geq 0}$.

Let $X_{n}=R^{n}$ with the supremum norm. Define $P_{n}: X \rightarrow R^{n}$ and $E_{n}: R^{n} \rightarrow X$ by

$$
P_{n} u=(u(1 / n), u(2 / n), \cdots, u(n / n)) \text { and } E_{n} x^{(n)}=f_{n}
$$

where $u \in X, x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, \cdots, x_{n}^{(n)}\right) \in R^{n}$ and $f_{n}(0)=x_{1}^{(n)}$, $f_{n}(k / n)=x_{k}^{(n)}, k=1,2, \cdots, n$ and linear between two consecutive points. Then $\left\|P_{n}\right\| \leq 1,\left\|E_{n}\right\| \leq 1, P_{n} E_{n}=I_{n}$ and $\lim _{n \rightarrow \infty} E_{n} P_{n} u=u$ for all $u \in X$.

Define $A_{n}: R^{n} \rightarrow R^{n}$ by

$$
A_{n} x^{(n)}=n\left(-x_{1}^{(n)}, x_{1}^{(n)}-x_{2}^{(n)}, \cdots, x_{n-1}^{(n)}-x_{n}^{(n)}\right)
$$

Then A_{n} is linear and $\left\|A_{n}\right\|_{n} \leq 2 n$. Let $u \in D(A)$. Then

$$
\begin{aligned}
& A_{n} P_{n} u \\
& =n(-u(1 / n), u(1 / n)-u(2 / n), \cdots, u((n-1) / n)-u(n / n)) \\
& =-\left(u^{\prime}\left(c_{1}\right), u^{\prime}\left(c_{2}\right), \cdots, u^{\prime}\left(c_{n}\right)\right)
\end{aligned}
$$

for some $c_{i} \in((i-1) / n, i / n), i=1,2, \cdots, n$ and

$$
P_{n} A u=-\left(u^{\prime}(1 / n), u^{\prime}(2 / n), \cdots, u^{\prime}(n / n)\right) .
$$

Since u^{\prime} is continuous, $\lim _{n \rightarrow \infty}\left\|A_{n} P_{n} u-P_{n} A u\right\|_{n}=0$. Hence we have

$$
\begin{aligned}
& \left\|E_{n} A_{n} P_{n} u-A u\right\| \\
& \leq\left\|E_{n} A_{n} P_{n} u-E_{n} P_{n} A u\right\|+\left\|E_{n} P_{n} A u-A u\right\| \\
& \leq M_{2}\left\|A_{n} P_{n} u-P_{n} A u\right\|_{n}+\left\|E_{n} P_{n} A u-A u\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Choose a sequence $\left\{h_{n}\right\}$ with $0<h_{n}<1 / n$. Then

$$
\begin{aligned}
& T_{n} x^{(n)}=x^{(n)}+h_{n} A_{n} x^{(n)} \\
& =\left(\left(1-n h_{n}\right) x_{1}^{(n)}, n h_{n} x_{1}^{(n)}+\left(1-n h_{n}\right) x_{2}^{(n)}\right. \\
& \left.\quad \cdots, n h_{n} x_{n-1}^{(n)}+\left(1-n h_{n}\right) x_{n}^{(n)}\right)
\end{aligned}
$$

Then $\left\|T_{n}\right\|_{n} \leq 1$ and so we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{t} E_{n} T_{n}^{\left[s / h_{n}\right]} P_{n} u d s=S(t) u \text { for } u \in X .
$$

That is, the values computed by the difference equations converge to the integrated semigroup.

References

[1] W. Arendt, Vector-valued Laplace transforms and Cauchy problem, Israel J. Math. 59 (1987), 327-352.
[2] H. Kellerman and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180.
[3] G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann. Sc. Norm Super. Pisa Cl Sci. 14 (1987), 285-334.
[4] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York, (1983).
[5] T. J. Xiao and J. Liang, Approximations of Laplace transforms and integrated semigroups, J. Funct. Anal. 172 (2000), 202-200.

Department of Mathematics
Seoul Women's University
Seoul 139-774, Republic of Korea
E-mail: younglee@swu.ac.kr

