오령지 저극성 분획으로부터의 화합물 분리

김유나¹·심상희^{1,2*} ¹영남대학교 생명공학부, ²덕성여자대학교 약학대학

Compounds from Non-polar Fraction of the Feces of Trogopterus xanthipes

Yuna Kim¹ and Sang Hee Shim^{1,2*}

¹School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea ²College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea

Abstract – Thirteen compounds were isolated from *n*-hexane layer of the extracts of feces of *Trogopterus xanthipes*. Their chemical structures were elucidated as lupeol (1), lupenone (2), simiarenol (3), epitaraxerol (4), taraxerone (5), fatty acid esters of 11-oxo- β -amyrin (6), 12-oleane-3,11-dione (7), 5β -stigmastan- 3α -ol (8), 5β -stigmastan- 3β -ol (9), 5α -stigmastan-3-one (10), 5β -stigmastan-3-one (11), 5β -cholestan- 3α -ol (12), and 2-methoxyphenanthrene (13) on the basis of spectroscopic data. Even though all the isolated compounds are known, to the best of our knowledge, all the compounds (1-13) are reported from this species for the first time.

Key words - Trogopterus xanthipes, Triterpenes, Steroids, Phenanthrene

오령지(五靈脂, Trogopterorum faeces)는 주로 날다람쥐 (Trogopterus xanthipes, 날다람쥐과 Petauristidae)의 분변을 말린 것으로, 대한민국약전외 한약(생약)규격집(KHP)에 수 록되어 있으며, 그 약리적 용도로 인해 한방에서는 예로부 터 중요시 다루어져 왔다.¹⁾ 날다람쥐는 측백나무가 많은 산 속에 주로 살고 있으며, 주로 측백나무 열매나 잎을 먹는 것 으로 알려져 있다. 오령지는 예로부터 혈액 순환을 원활하 게 하고, 어혈을 제거해 주는 효능이 있다 하여 한방에서 많 이 사용되어 왔다.1) 오령지는 빈혈, 생리통 또는 무월경 등 의 주로 여성 질환에 효과적인 것으로 보고되어 왔고, 최근 에는 오령지 추출물이 자궁 근종에 효과적인 것으로 보고 된 바 있다.^{2,3)} 오령지의 화학적 성분으로는, 주로 diterpenoids, fatty acids, flavonoids 등이 보고되어 왔으며,⁴⁹⁾ 특히 anticoagulation assay에서 flavonoid 성분들이 활성이 있음이 보고되었다.¹⁰⁾ 또한 오령지에서 pimarane 또는 isopimarane type의 diterpenoids가 분리, 보고되었는데 이들 은 human cancer cell lines에 독성이 있는 것으로 보고되었 다.11) 최근에는 오렁지의 ethyl acetate층에서 세포독성 효능 이 있는 neolignan계열의 화합물들이 본 연구의 저자들에 의해 보고되었다.12)

오령지 MeOH추출물을 극성에 따라 여러 분획으로 나눈 후 각각의 분획에 대해 TLC를 실시한 결과, 기존의 문헌과 는 다소 상이하게 *n*-hexane분획에서 다양한 화합물이 분포 하는 것으로 밝혀졌다. 이에 본 연구에서는 오령지 추출물 의 저극성 분획을 대상으로 화학적 연구를 실시하여 13종 의 화합물들을 분리하여 보고하고자 한다.

재료 및 방법

실험재료 - 본 실험에 사용된 오령지는 2014년 3월 대구 시 약령시장에서 구입하여 사용하였으며, 표본은 영남대학 교 생명공학부 천연물화학 연구실에 보관 중이다.

기기 및 시약 – TLC(Thin layer chromatography)의 결과 확인은 UV detector(Vilber lourmat, France)을 이용한 254 nm와 365 nm 파장에서 관찰하였고 발색을 병행하여 확 인하였다. 단일 화합물의 구조를 규명하기 위해 이용한 NMR(Nuclear magnetic resonance) spectrum은 Varian VNS 600 spectrometer(¹H: 600 MHz, ¹³C: 150 MHz)와 Varian VNS 300 spectrometer(¹H: 300 MHz, ¹³C: 75 MHz) 그리고 Bruker DPX 300 spectrometer(¹H: 300 MHz, ¹³C: 75 MHz)를 사용하여 측정하였고, NMR chemical shift value는 part per million(ppm)단위로 나타내었다. 선광도 측

^{*}교신저자(E-mail):shshim29@naver.com (Tel):+82-2-901-8774

정을 위해서는 JASCO DIP-1000을 사용하였고, Mass spectrometer로는 Expression CMS(ADVION) 및 Jeol JMS600을 사용하였다. TLC plate는 Kiesel gel 60 F₂₅₄ (precoated, Merck Art. 5715)을 사용하였고 결과 확인을 위 해 발색시약으로 20% *aq.* H₂SO₄를 사용하였다. Column chromatography용 고정상은 Kiesel gel 60(70-230 mesh, Merck Art. 7734)와 Sephadex LH-20(GE Healthcare, Sweden)를 사용하였다. Column chromatography용 유기용 매는 시약용 1급(OCI company Ltd., DC chemical CO. Ltd.)을 사용하였다. NMR 측정을 위해 사용한 용매는 CDCl₃(Cambridge Isotope Laboratories, Inc.)이다.

추출 - 오령지 2.4 kg을 MeOH로 3회 환류추출하여, 감압 농축기로 용매를 제거하여 MeOH 추출물(110 g)을 얻었다. 이를 증류수에 현탁시켜 동량의 *n*-hexane을 가하여 *n*-hexane 층과 수층을 분획하는 과정을 3회 반복하였고, 분획물을 감 압 농축하여 41g의 *n*-hexane 층을 얻었다.

분리 및 정제 - MeOH 추출물을 분획하여 얻은 n-hexane 분획층에 대하여 n-hexane/EtOAc 혼합용매로 기울기 용리 $(35:1\rightarrow 2:1, v/v)$ 치켜 silica gel open column chromatography 를 실시하여 총 8개의 분획을 얻었다(Fr. 1~Fr. 8). 얻어진 분획들 중 Fr. 1(6.7 g)에 대하여 n-hexane/methylene chloride 혼합용매로 기울기 용리(30:1→5:1, v/v)시켜 silica gel column chromatography를 한 번 더 수행하여 화합물 2(20 mg), 화 합물 5(15 mg), 화합물 10(45 mg), 화합물 11(12 mg)을 분 리하였다. 앞서 얻은 8개의 소분획 중 Fr. 2(10 g)도 nhexane/EtOAc 혼합용매로 기울기 용리(30:1→1:1, v/v)시켜 silica gel column chromatography를 한 번 더 수행하여 subfraction(Fr. 2-1~Fr. 2-6)를 얻었다. 그 중 Fr. 2-2와 Fr. 2-3 그리고 Fr. 2-6을 acetone/MeOH/H₂O 혼합용매로 기울기 용리(2:2:1→5:5:1, v/v)시켜 RP-18 레진으로 reverse open column chromatography을 진행하였다. 그 결과 Fr. 2-2에서 는 화합물 3(3 mg), 화합물 4(6 mg), 화합물 6(6 mg)을 분리 하였고 Fr. 2-3에서는 화합물 1(34 mg)을 분리하였으며 Fr. 2-6에서는 화합물 7(10 mg), 화합물 8(20 mg), 화합물 9(6 mg), 화합물 12(2 mg) 및 화합물 13(4 mg)을 분리하였다.

Lupeol (1) – white powders. $[\alpha]_{D}^{20}$ +12.5°(*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 300 MHz) & 4.67 (1H, s, H-29a), 4.55(1H, s, H-29b), 3.17 (1H, dd, *J*=11, 6.0 Hz, H-3), 3.26 (1H, m, H-19), 1.67, 1.02, 0.95, 0.93, 0.82, 0.76, and 0.75 (each 3H, s, CH₃×7); ¹³C-NMR (CDCl₃, 75 MHz), Table I; (+) ESI-MS *m/z*: 449 [M+Na]⁺.

Lupenone (2) – white powders. $[\alpha]_D^{20}$ +36.3° (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 300 MHz) δ : 4.65 (1H, s, H-29a), 4.54 (1H, s, H-29b), 2.38 (2H, m, H₂-2), 1.65, 1.04, 1.04, 0.99, 0.92, 0.90, and 0.76 (each 3H, s, CH₃×7); ¹³C-NMR (CDCl₃, 75 MHz), Table I; EI-MS *m/z*: 424 [M]⁺.

Simiarenol (**3**) – white powders. $[\alpha]_D^{20}$ +19.7°(*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 600 MHz) δ : 5.59 (1H, m, H-6), 3.45 (1H, br s, H-3), 1.12, 1.03, 0.98, 0.90, 0.87, and 0.76 (each 3H, s, CH₃×6), 0.86 (3H, d, *J*=6.5 Hz, CH₃-29), and 0.80 (3H, d, *J*=6.5 Hz, CH₃-30); ¹³C-NMR(CDCl₃, 150 MHz), Table I; (+) ESI-MS *m/z*: 449 [M+Na]⁺.

Epitaraxerol (4) – white powders. $[\alpha]_D^{20} 3.3^{\circ}$ (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 600 MHz) δ : 5.50(1H, dd, *J*=3.2, 8.2 Hz, H-15), 3.38 (1H, br s, H-3), 1.23, 1.07, 0.93, 0.92, 0.91, 0.89, 0.84, and 0.80 (each 3H, s, CH₃×8); ¹³C-NMR (CDCl₃, 150 MHz), Table I; (+) ESI-MS *m/z*: 449 [M+Na]⁺.

Taraxerone (5) – white powders. $[\alpha]_D^{20}$ +17.7° (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 300 MHz) δ : 5.521H, dd, *J*=2.0, 4.2 Hz, H-15), 2.551H, m, H-2a), 2.311H, m, H-2b), 1.11, 1.05, 1.04, 1.03, 0.92, 0.88, 0.87, and 0.80each 3H, s, CH₃×8); ¹³C-NMR (CDCl₃, 75 MHz), Table I; EI-MS *m/z*: 424 [M]⁺.

Fatty acid esters of 11-oxo-β-amyrin (**6**) – white powders. $[\alpha]_{D}^{20}$ +36.3° (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 600 MHz) δ: 5.56 (1H, s, H-12), 4.49 (1H, dd, *J*=5.0, 11 Hz, H-3), 1.32, 1.22, 1.22, 1.13, 1.10, 0.87, 0.85, 0.82 (each 3H, s, CH₃×8), 1.25 [br s, (CH₂)_n in acyl moiety], 0.85 (br t, terminal methyl in acyl moiety); ¹³C-NMR in acyl moiety δ; 170.0, 29.9, 29.6, 22.9, 21.3, 14.1; (+) ESIMS *m/z*: 679 [M+H]⁺.

12-Oleane-3,11-dione (7) – white powders. $[\alpha]_{D}^{20}$ +131.2° (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 300 MHz) δ : 5.60 (1H, s, H-12), 2.94 (1H, m, H-2a), 2.61 (1H, m, H-2b), 2.41 (1H, s, H-9), 1.34, 1.24, 1.15, 1.08, 1.04, 0.88, 0.87, and 0.85 (each 3H, s, CH₃×8); ¹³C-NMR (CDCl₃, 75 MHz), Table I; (+) ESI-MS *m/z*: 439 [M+H]⁺.

5β-Stigmastan-3α-ol(8) – white powders. $[α]_D^{20}$ +30.7° (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 300 MHz) δ: 3.60 (1H, m, H-3), 0.87 (3H, d, *J*=7.1 Hz, CH₃-21), 0.83 (3H, t, *J*=7.4 Hz, CH₃-29), 0.81 (3H, d, *J*=6.7 Hz, CH₃-26), 0.78 (3H, d, *J*=6.3 Hz, CH₃-27), 0.62 and 0.89 (each 3H, s, CH₃×2); ¹³C-NMR (CDCl₃, 75 MHz), Table I; EI-MS *m/z*: 416 [M]⁺.

5β-Stigmastan-3β-ol (9) – white powders. $[α]_D^{20}$ +17.4° (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 300 MHz) δ: 4.08 (1H, br s, H-3), 0.90 (3H, d, *J*=6.4 Hz, CH₃-21), 0.87 (3H, t, *J*=7.3 Hz, CH₃-29), 0.82 (3H, d, *J*=6.7 Hz, CH₃-26), 0.80 (3H, d, *J*=6.7 Hz, CH₃-27), 0.94 and 0.63 (each 3H, s, CH₃× 2); ¹³C-NMR (CDCl₃, 75 MHz), Table I; EI-MS *m/z*: 416 [M]⁺.

Position -	Compounds											
	1	2	3	4	5	6	7	8	9	10	11	12
1	38.7	39.8	18.3	33.1	38.6	39.0	40.0	35.6	30.2	38.7	37.3	35.6
2	27.4	33.8	28.0	25.1	34.4	23.8	32.3	30.8	28.1	38.4	37.5	30.8
3	79.0	218.5	76.6	76.2	217.8	80.9	217.4	72.1	67.4	212.3	213.7	72.1
4	38.9	47.5	41.1	37.4	47.8	38.3	48.0	36.7	33.8	44.9	42.6	36.7
5	55.3	55.1	142.2	49.2	56.0	55.2	55.6	42.3	36.8	46.9	44.6	42.4
6	18.3	19.9	122.2	18.7	20.2	17.6	19.0	27.4	26.5	29.3	26.0	27.5
7	34.3	34.3	24.3	41.2	37.8	32.6	31.3	26.7	26.9	31.9	26.9	26.7
8	40.8	41.0	44.5	39.2	39.1	43.6	36.9	36.1	35.9	35.6	35.8	36.0
9	50.4	50.0	35.1	48.9	48.9	61.9	61.2	40.7	40.0	54.0	41.0	40.7
10	37.2	37.1	50.5	35.8	36.0	37.1	34.4	34.8	35.4	35.8	35.1	34.8
11	20.9	21.7	34.4	17.4	17.7	200.4	199.7	21.1	21.3	21.6	21.4	21.1
12	25.1	25.3	29.2	33.8	37.9	128.3	128.2	40.4	40.5	40.1	40.3	40.5
13	38.1	38.4	38.8	37.5	36.9	171.2	171.3	42.9	43.0	42.8	43.0	42.9
14	42.8	43.1	39.5	158.2	157.8	45.7	43.7	56.8	56.9	56.3	56.5	56.8
15	27.4	27.6	29.3	116.7	117.4	26.6	26.7	24.5	24.5	24.4	24.4	24.5
16	35.6	35.7	35.6	37.7	38.0	26.7	26.6	28.6	28.6	28.4	28.5	28.6
17	43.0	43.2	43.0	38.0	35.3	32.2	32.6	56.5	56.5	56.5	56.7	56.6
18	48.3	48.4	52.0	48.7	49.0	47.8	47.9	12.2	12.2	12.2	12.3	12.3
19	48.0	48.1	20.2	36.7	40.8	45.4	45.5	23.6	24.1	11.6	22.9	23.6
20	150.9	151.0	28.5	28.8	29.0	31.3	30.0	36.4	36.4	36.3	36.4	36.1
21	29.8	30.0	60.3	32.2	33.8	34.7	34.6	18.9	19.0	18.9	19.0	19.0
22	40.0	40.2	31.0	35.1	33.3	36.7	36.7	34.1	34.2	34.1	34.1	36.4
23	28.0	26.8	29.3	28.2	21.7	28.3	26.6	26.3	26.3	26.2	26.3	24.1
24	15.4	21.2	25.7	22.2	21.6	16.6	18.8	46.1	46.1	46.0	46.1	39.7
25	16.1	16.2	18.1	15.2	15.0	16.9	15.9	29.4	29.4	29.9	29.4	28.2
26	16.0	16.0	16.0	26.0	26.3	18.9	21.6	20.0	20.0	20.0	20.1	22.8
27	14.5	14.7	15.2	21.2	25.8	23.6	29.0	19.3	19.3	19.2	19.3	23.0
28	18.0	18.2	16.3	29.80	33.6	29.0	23.7	23.3	23.3	23.2	23.3	
29	109.3	109.6	22.2	33.3	30.1	33.3	33.3	12.2	12.3	12.1	12.2	
30	19.3	19.5	23.1	29.9	30.0	23.7	23.6					

 Table I.
 ¹³C-chemical shifts for compounds 1-12

5/β-Stigmastan-3-one (**10**) – white powders. $[\alpha]_D^{20}$ +31.9° (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 300 MHz) δ : 2.31 (1H, m, H-2), 0.91 (3H, d, *J*=6.3 Hz, CH₃-21), 0.84 (3H, t, *J*=6.9 Hz, CH₃-29), 0.82 (3H, d, *J*=6.6 Hz, CH₃-26), 0.80 (3H, d, *J*=6.3 Hz, CH₃-27), 0.99 and 0.67 (each 3H, s, CH₃×2); ¹³C-NMR (CDCl₃, 75 MHz), Table I; EI-MS *m/z*: 414 [M]⁺.

5 β -Stigmastan-3-one (**11**) – white powders. $[\alpha]_D^{20}$ +43.8° (*c*, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 300 MHz) δ : 2.67 (1H, t, H-2), 0.89 (3H, d, *J*=6.5 Hz, CH₃-21), 0.833H, t, *J*=7.2 Hz, CH₃-29), 0.813H, d, *J*=6.7 Hz, CH₃-26)

0.793H, d, J=6.7 Hz, CH₃-27), 1.01 and 0.66each 3H, s, CH₃× 2); ¹³C-NMR (CDCl₃, 75 MHz), Table I; EI-MS m/z: 414 [M]⁺.

5β-Cholestan-3α-ol (12) – white powders. $[\alpha]_D^{20}$ +11.2° (c, 0.1 in CHCl₃); ¹H-NMR (CDCl₃, 600 MHz) δ: 3.60 (1H, m, H-3), 0.88 (3H, d, *J*=6.7 Hz, CH₃-21), 0.85 (3H, d, *J*=6.7 Hz, CH₃-26), 0.84 (3H, d, *J*=6.7 Hz, CH₃-27), 0.90 and 0.62 (each 3H, s, CH₃×2); ¹³C-NMR (CDCl₃, 150 MHz), Table I; EI-MS *m/z*: 388 [M]⁺.

2-methoxyphenanthrene (13) – white powders. ¹H-NMR (CDCl₃, 600 MHz) δ : 7.73 (1H, d, *J*=8.4 Hz, H-4), 7.49 (1H, d, J = 7.8 Hz, H-5), 7.48 (1H, d, J=7.8 Hz, H-8), 7.38 (1H, t, J=7.8 Hz, H-6), 7.33 (1H, t, J=7.8 Hz, H-7), 7.32 (1H, m, H-9), 6.89 (1H, dd, J=6.6, 2.4 Hz, H-10), 6.70 (1H, dd, J=8.4, 2.4 Hz, H-3), 6.63 (1H, d, J=2.4 Hz, H-1), 3.85 (3H, s, 2-OCH₃); ¹³C-NMR (CDCl₃, 150 MHz) δ : 101.6 (C-1), 161.1 (C-2), 110.3 (C-3) 12.8 (C-4) 124.5 (C-5), 127.4 (C-6), 127.2 (C-7), 113.0 (C-8), 119.9 (C-9), 107.7 (C-10), 55.5 (OCH₃), 153.2, 135.0, 121.2, and 113.7 (nonhydrogenated carbons); EI-MS m/z: 210 [M]⁺.

결과 및 고찰

오령지 MeOH 추출물의 *n*-hexane 분획으로부터 open column chromatography, preparative TLC, 재결정 등의 방법으로 총 13종의 화합물을 분리하였다(Fig. 1).

화합물 1의 ¹H-NMR spectrum에서 δ 1.02, 0.95, 0.93, 0.82, 0.76 및 0.75에서 6개의 angular methyl기를 확인하여 이 화합물이 triterpene계 화합물임을 추정할 수 있었다. 또 한 δ 3.18에서 multiplet으로 나타나는 triterpene의 통상적인 3번 oxymethine proton을 확인할 수 있었다. δ 1.67에서 sp^2 carbon에 결합하고 있는 또 하나의 methyl기를 확인하였고, δ 4.67 및 4.55에서 각각 singlet으로 나타나는 두 개의 olefinic proton을 확인하여 이 화합물이 isopropenyl group 을 함유하고 있는 lupane계열의 triterpenoid임을 추정할 수 있었다. ¹³C-NMR spectrum에서 총 30개의 탄소를 확인하 여 triterpene임을 확인하였다. δ 28.0, 19.3, 18.0, 16.1, 16.0, 15.4 및 14.5에서 7개의 methyl기를 확인하였고, δ 79.0에서 3번의 oxymethine carbon을, δ 150.9 및 109.3에서 isopropenyl 기의 olefinic carbons을 확인할 수 있었다. 이상 의 데이터를 문헌과 비교하여 이 화합물이 lupane계의 triterpenoid인 lupeol임을 확인할 수 있었다.¹³⁾

화합물 2의 ¹H-NMR spectrum은 화합물 1의 그것과 매 우 유사하였다. 화합물 2 역시 isopropenyl 기를 포함하여 7 개의 methyl기를 가지고 있는 lupane계의 triterpenoid임을 알 수 있었다. 화합물 1과 다른 점은 $\delta_{\rm H}$ 3.18 및 $\delta_{\rm C}$ 79.0에 서 나타났던 oxymethine기가 사라지고, 대신 $\delta_{\rm C}$ 218.5에서 ketone기가 나타났다는 점이다. 이로써 이 화합물은 화합물 1이 산화된 형태라는 것을 추정할 수 있었고, spectral data 를 기존의 문헌과 비교하여 lupenone임을 확인할 수 있었다.¹⁴⁾

화합물 **3**의 ¹H-NMR spectrum에서 δ 1.11, 1.02, 0.97, 0.89, 0.86 및 0.75 에서 singlet으로 나타나는 6개의 angular methyl기를 확인하였고, δ 0.85 및 0.80에서 doublet으로 나타나는 두 개의 secondary methyl기를 확인하여, 이 화합물 이 isopropyl기를 함유하고 있는 hopane계 triterpene임을 추 정할 수 있었다. δ 5.59에서 broad한 doublet으로 나타나는

olefinic proton을, δ 3.44에서 3번의 oxymethine 기를 확인 할 수 있었다. 13 C-NMR spectrum에서 총 30개의 탄소를 확 인하였고, 특히 δ 150.9 및 109.3에서 5번, 6번 위치의 olefinic carbons을 확인할 수 있었다. 이상의 데이터를 문헌 과 비교하여 이 화합물이 simiarenol임을 확인할 수 있었다.¹⁵⁾

화합물 4의 ¹H-NMR spectrum에서 δ 1.23, 1.07, 0.93, 0.92, 0.91, 0.89, 0.84 및 0.80에서 8개의 angular methyl기 를 확인할 수 있었고, 특히 δ 5.55에서 olefinic proton을, δ 3.38에서 3번 위치의 oxymethine proton을 확인할 수 있었 다. 이 화합물의 ¹³C-NMR spectrum에서 δ 158.2 및 116.7 에서 taraxerane골격의 특징적인 14번, 15번 olefinic carbon 을 확인하여 이 화합물이 taraxerol임을 추정할 수 있었다. 그런데 3번 oxymethine proton이 δ 3.38에서 broad singlet 으로 나타나고, 3번 탄소가 δ 76.2에서 나타나는 것으로써 이 화합물의 3위의 hydroxyl 기는 α configuration을 가지고 있는, 즉 taraxerol의 epimer형태임을 추정할 수 있었다. 이 상의 spectral data를 문헌과 비교하여 이 화합물이 epitaraxerol임을 확인할 수 있었다.¹⁶

화합물 5의 ¹H-NMR 및 ¹³C-NMR spectrum은 화합물 4 의 그것들과 매우 유사하였다. 차이점은 화합물 5에서는 화 합물 4의 $\delta_{\rm H}$ 3.38 및 $\delta_{\rm C}$ 76.2 에서 나타났던 oxymethine signal이 사라지고 대신 $\delta_{\rm C}$ 217.8에서 ketone기가 나타났다 는 점이다. MS에서도 화합물4에 비해서 *m/z* 2가 부족한 화 합물임을 확인하여, 화합물 5는 화합물4의 hydroxyl기가 산 화된 형태인 taraxerone임을 추정할 수 있었고, 문헌의 data 와 비교하여 이를 확인할 수 있었다.¹⁷

화합물 6의 ¹H-NMR spectrum에서 δ 1.32, 1.22, 1.21, 1.13, 1.10, 0.87, 0.85 및 0.82에서 8개의 angular methyl기 를, δ 5.60에서 singlet 으로 나타나는 하나의 olefinic proton 을, δ 4.49에서 3번 위치의 oxymethine proton을 확인할 수 있었다. Triterpene에서는 통상적으로 3번 oxymethine이 δ 3.5~4.0에서 나타나는데 이 화합물에서는 δ 4.49에서 저자 장 shift 되어 나타나는 것으로 이 위치에 acylation되어 있 음을 추정할 수 있었다. 또한 δ_H 1.25 및 δ_C 30에서 long chain의 fatty acyl group이 나타나는 것으로 이 화합물의 3 번 위치에 지방산이 acylation되어 있음을 추정할 수 있었 다. 이 화합물을 기존의 문헌과 비교하여 fatty acid esters of 11-oxo-β-amyrin로 동정할 수 있었다.¹⁸⁾ 이 화합물의 ¹H-NMR spectrum에서 어떤 olefinic signal도 확인할 수 없었 으므로, 결합하고 있는 지방산은 포화지방산임을 추정할 수 있었고, 지방산의 종류는 이 화합물의 (+)-FABMS를 해석 하여 결정할 수 있었다. m/z 679에서 [M+H]⁺에 해당하는 peak이 가장 크게 나타나 이 화합물에는 palmitic acid가 가 장 많이 acylation되어 있음을 확인할 수 있었다.

화합물 7의 ¹H-NMR spectrum에서 δ 1.34, 1.24, 1.15, 1.08, 1.04, 0.88, 0.87 및 0.85에서 8개의 angular methyl기

Fig. 1. Chemical structures of compounds 1-13.

를 확인할 수 있었고, 특히 δ 5.60에서 singlet 으로 나타나 는 하나의 olefinic proton을 확인할 수 있었다. 그러나, 통 상적으로 나타나는 3번의 oxymethine proton시그널은 나타 나지 않아 이 화합물은 3번 위치가 산화된 triterpene형태임

을 추정할 수 있었다. ¹³C-NMR spectrum에서 δ 217.4 및 199.7에서 두 개의 ketone carbon을 확인하였고, δ 171.3 및 128.2에서 나타난 olefinic group은 carbonyl group과 conjugation하고 있음을 추정할 수 있었다. 따라서 이 화합

물은 oleanane 골격에 3번과 11번이 oxidation되어 있고, 11,12위치에 olefinic group이 conjugatin되어 있는 12oleane-3,11-dione 임을 추정할 수 있었고, 이는 문헌의 spectral data를 비교함으로써 확인할 수 있었다.¹⁹⁾

화합물 8의 ¹H-NMR spectrum에서 δ 0.89 및 0.62에서 두 개의 angular methyl기를, δ 0.87, 0.81 및 0.78 각각 doublet(*J*=7.8 Hz)으로 나타나는 세 개의 secondary methyl 기를, δ 0.83에서 triplet(*J*=7.2 Hz)으로 나타나는 하나의 methyl기를 확인하여 이 화합물은 triterpene이 아닌 steroid 계열임을 추정할 수 있었다. 이 화합물의 ¹³C-NMR spectrum 에서 전부 29개의 carbon signal을 확인하여 이 화합물이 stigmastane 계열의 steroid 화합물임을 확인할 수 있었다. 특 히 9번 탄소가 δ 40.7에 나타난 것으로 이 화합물의 5번 수 소는 β configuration을 가지는 것으로 예상할 수 있었다. 이 상의 spectral data를 문헌과 비교하여 이 화합물을 5 β stigmastan-3 β -ol으로 동정하였다.²⁰⁾

화합물 9의 ¹H-NMR 및 ¹³C-NMR spectra는 화합물 8의 그것들과 매우 유사하였다. 차이점은 화합물 8에서 ä 72.1 에 나타났던 3번 탄소가 화합물 9에서는 δ 67.4에서 나타났 다는 점이다. 이로써 3번 위치에 hydroxyl 기의 configuration 이 다른 형태임을 추정할 수 있었고, hydroxyl기에 대해 δ 위치에 있는 1번 및 5번 탄소의 chemical shift가 크게 다른 것으로써 이 사실을 확인할 수 있었다. 이 data를 문헌치와 비교함으로써 화합물 9를 5β-stigmastan-3β-ol으로 동정할 수 있었다.²⁰⁾

화합물 10의 ¹H-NMR 및 ¹³C-NMR spectra도 화합물 8 및 9와 유사하여 화합물 10 역시 stigmastane 타입의 steroid 계 화합물임을 추정할 수 있었다. 차이점은 화합물 10에서 는 3번 위치의 oxymethine signal들이 사라지고, 대신 ketone group이 나타나 이 화합물은 화합물 8과 9에 비해 3번 위치 가 산화된 형태임을 추정할 수 있었다. 또한 화합물 8과 9 에서는 δ 40 근처에서 나타났던 9번 탄소가 화합물 10에서 는 δ 54에서 나타나 이 화합물의 5번 protone β configuration 에 있음을 추정할 수 있었다. 이상의 data를 문헌과 비교하 여 이 화합물을 5 β -stigmastan-3-one으로 동정할 수 있었다.²¹⁾

화합물 11의 ¹H-NMR 및 ¹³C-NMR spectra도 화합물 10 과 매우 유사하였다. 차이점은 화합물 10에서는 δ 54에서 나타났던 9번 탄소가 화합물 11에서는 δ 41에서 나타나 이 화합물의 5번 proton은 β configuration에 있음을 추정할 수 있었다. 이상의 data를 문헌과 비교하여 이 화합물을 5 β stigmastan-3-one으로 동정할 수 있었다.²¹⁾

화합물 **12**의 ¹H-NMR spectrum에서 δ 0.90 및 0.62에서 두 개의 angular methyl기를, δ 0.88, 0.85 및 0.84에서 각각 doublet(*J*=6.7 Hz)으로 나타나는 세 개의 secondary methyl 기를 확인하였고, ¹³C-NMR spectrum에서 전부 27개의 carbon signal을 확인하여 이 화합물이 cholestane 계열의

steroid 화합물임을 추정할 수 있었다. 또한 이 화합물의 9 번 탄소는 δ 40.7에서 나타나 5번 proton이 β configuration 에 있음을 추정할 수 있었다. 이상의 data를 문헌과 비교하 여 이 화합물을 5 β -cholestan-3 α -ol으로 동정할 수 있었다.²²⁾

화합물 13은 20% 황산발색 시약에서 특징적인 푸른색을 나타냈다. 이 화합물의 ¹H 및 ¹³C-NMR은 기존에 분리된 화 합물들과 완전히 다르게 aromatic proton signal들만 나타났 다. 이 화합물의 NMR spectra에서 δ_H 6.5~7.8에서 9개의 aromatic proton signal들이, δ_{C} 100~165에서 14개의 aromatic carbon signal들이, 또한 $\delta_{\rm H}$ 3.85; $\delta_{\rm C}$ 55.5에서 하나 의 methoxy기가 확인되었다. 이 화합물의 aromatic carbon signal의 개수 및 proton signal들의 coupling pattern을 통해 benzene ring 세 개가 서로 fusion 되어 있는 형태임을 예상 하였고, proton signal들의 coupling constants 및 ¹H-¹H COSY spectrum을 통하여 ABX, AB 및 ABCD proton system을 가지는 benzene ring 세 개가 서로 fusion되어 있 는 phenanthrene 계 화합물임을 추정할 수 있었다. $\delta_{\rm H}$ 3.85 에서 나타난 proton이 δ_{C} 161.1의 carbon과 HMBC correlation하는 것으로 methoxyl기가 2번 위치에 결합하고 있음을 확인할 수 있었다. 이상의 spectral data를 문헌과 비 교하여 이 화합물을 2-methoxyphenanthrene로 동정하였다.²³⁾

이 연구에서 오령지 추출물의 저극성 분획으로부터 13종 의 화합물, 즉 2종의 lupane 형태의 triterpenes(화합물 1과 2), 1종의 hopane 형태의 triterpene(화합물 3), 2종의 taraxerane 형태의 triterpenes(화합물 4와 5), 2종의 oleanane 형태의 triterpenes(화합물 6와 7), 4종의 stigmastane 형태의 steroids(화합물 8, 9, 10 및 11), 1종의 cholestane 형태의 steroid(화합물 12) 및 1종의 phenanthrene계 화합물(13)이 분리되었다. 오령지에서 분리된 triterpene화합물들은 대부분 이 ursane 형태인 것으로 보고되어 있는 반면.5.0 본 연구에 서 분리된 triterpene은 oleane, lupane, hopane 및 taraxerane 으로 기존의 연구결과와는 차이를 보였다. 본 연구에서 분 리된 steroid계열의 화합물들도 오렁지에서는 처음으로 분리 되었다. 그리고 본 연구에서 분리된 2-methoxyphenanthrene 은 천연에서는 처음으로 분리보고되는 화합물이다. 따라서 본 연구에서 분리된 13종의 화합물 모두 오령지에서는 처 음으로 분리보고되는 물질들이다.

결 론

오령지 추출물의 *n*-hexane 분획으로부터 총 13종의 화합 물들을 분리하였다. 분리된 화합물들은 spectral data를 바탕 으로 각각 lupeol(1), lupenone(2), simiarenol(3), epitaraxerol (4), taraxerone(5), fatty acid esters of 11-oxo- β -amyrin(6), 12-oleane-3,11-dione(7), 5β -stigmastan- 3α -ol(8), 5β -stigmastan- 3β -ol(9), 5α -stigmastan-3-one(10), 5β -stigmastan-3-one (11), 5β-cholestan-3α-ol(12) 및 2-methoxyphenanthrene(13) 로 동정하였다. 분리된 화합물들이 알려진 구조의 화합물이 라 할지라도, 본 연구에서 분리된 13종의 화합물 모두 오령 지에서는 처음으로 분리보고되는 바이다. 본 연구결과가 기 존의 연구와 차이를 나타내는 것은 오령지가 식물이 아닌 날다람쥐의 분변을 말린 것이므로, 날다람쥐의 먹이에 따른 차이가 분포하는 화합물에 반영된 것으로 사료된다.

인용문헌

- Tang, X. G. and Huang, W. Q. (2008) A summary of pharmacology and clinical application of feces Trogopterus. *J. Emerg. Tradi. Chin. Med.* 17: 101-102.
- Yang, N. Y., Tao, W. W. and Duan, J. A. (2009) Four new long-chainaliphatics from the feces of *Trogopterus xanthipes*. *J. Asian. Nat. Prod. Res.* 11: 1032-1039.
- Mu, Y.L., Shi, M., Liu, M., Tang, C.S. and Ye, F. (2009) Uterine leiomyoma and traditional medicine. *J. Chin. Clin. Med.* 4: 706-711.
- Zhao, J., Zhu, H. J., Zhou, X. J., Yang, T. H., Wang, Y. Y., Su, J., Li, Y. and Cheng, Y. X. (2010) Diterpenoids from the feces of *Trogopterus xanthipes. J. Nat. Prod.* **73**: 865-869.
- Numata, A., Takahashi, C., Miyamoto, T., Yoneda, M. and Yang, P.M. (1990) New triterpenes from a Chinese medicine, goreishi. *Chem. Pharm. Bull.* 38: 942-944.
- Numata, A., Yang, P.M., Takahashi, C., Fujiki, R., Nabae, M. and Fujita, E. (1989) Cytotoxic triterpenes from a Chinese medicine, Goreishi. *Chem. Pharm. Bull.* 37: 648-651.
- 7. Yang, N. Y., Tao, W. W. and Duan, J. A. (2009) Four new long-chain aliphatics from the feces of *Trogopterus xanthipes. J. Asian. Nat. Prod. Res.* **11**: 1032-1039.
- Zhao, J., Dai, L.X., Lei, T., Lu, Q. and Cheng, Y. X. (2010) Chemical constituents of *Trogopterus xanthipes*. *Nat. Prod. Res. Dev.* 22: 541-543.
- Zhao, J., Zhu, H. J., Zhou, X. J., Yang, T. H., Wang, Y. Y., Su, J., Li, Y. and Cheng, Y. X. (2010) Diterpenoids from the feces of *Trogopterus xanthipes*. J. Nat. Prod. 73: 865-869.
- 10 Yang, N. Y., Tao, W. W. and Duan, J. A. (2010) Antithrombotic flavonoids from the faeces of *Trogopterus xanthipes. Nat. Prod. Res.* **24**: 1843-1849.
- Yang, N. Y., Tao, W. W., Zhu, M., Duan, J. A. and Jiang, J. G. (2010) Two new isopimarane diterpenes from the feces of

Trogopterus xanthipes. Fitoterapia 81: 381-384.

- Baek, S., Xia, X., Min, B. S., Park, C. and Shim, S. H. (2014) Trogopterins A-C: Three new neolignans from faeces of *Trogopterus xanthipes. Beilstein J. Org. Chem.* 10: 2955-2962.
- Fotie, J., Bohle., D. S., Leimanis, M., Georges, A., Rukunga, G. and Nkengfack, A. E. (2006) Lupeol long-chain fatty acid esters with antimalarial activity from *Holarrhena floribunda*. *J. Nat. Prod.* 69: 62-67
- Yonemoto, R., Shimada, M., Gunawan-Puteri, M. D., Kato, E. and Kawabata, J. (2014) α-Amylase inhibitory triterpene from *Abrus precatorius* leaves. J. Agric. Food Chem. 62: 8411-8414.
- Jin, Q., Ko, H. J., Chang, Y.-S. and Woo, E.-R. (2013) Chemical constituents from the aerial parts of *Aster yomena*. *Nat. Prod. Sci.* 19: 269-274.
- Tsai, P.-W., De castro-cruz, K. A., Shen, C-C. and Ragasa, C. Y. (2012) Chemical constituents of *Broussonetia luzonicus*. *Pheog. J.* 4: 1-4.
- Koay, Y. C., Wong, K. C., Osman, H., Eldeen, I. M. S. and Asmawi, M. Z. (2013) Chemical constituents and biological activities of *Strobilanthes crispus* L. *Rec. Nat. Prod.* 7: 59-64.
- Wahlberg, I., Karlsson, K. and Enzell, C. R. (1972) Nonvolatile constituents of deertongue leaf. *Acta Chem. Scand.* 26: 1383-1388.
- Hu, H., Wang, K., Wu, B., Sun, C. and Pan, Y. (2005) Chemical shift assignments of two oleanane triterpenes from *Euonymus hederaceus. J. Zhejiang Univ. Sci. B* 6: 719-721.
- Rakhit, S., Dhar, M. M., Anand, N. and Dhar, M. L. (1959) Chemical investigations of *Daemia extensa*. J. Sci. Ind. Res. INDIA 18B: 422-426.
- Luo, J.-R., Ma, Q.-Y., Zhao, Y.-X., Yi, T.-M., Li, C.-S. and Zhou, J. (2009) Palaeophytochemical components from the miocene-fossil wood of *Pinus griffithii. J. Chin. Chem. So.* 56: 600-605.
- Leibfritz, D. and Roberts, J. D., J. (1973) Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of cholic acids and hydrocarbons included in sodium desoxycholate solutions. J. Am. Chem. Soc. 95: 4996-5003.
- Jana, R., Biswas, A., Samanta, S. and Ray, J. K. (2010) Synthesis of phenanthrene and alkyl phenanthrenes by palladium(O)-catalyzed pericyclic reactions. *Synthesis* 12: 2092-2100.

(2015. 1. 16 접수; 2015. 2. 6 심사; 2015. 2. 12 게재확정)