DOI QR코드

DOI QR Code

House Dust Mite Extract Induces $PLC/IP_3$-dependent $Ca^{2+}$ Signaling and IL-8 Expression in Human Gingival Epithelial Cells

  • Son, Ga-Yeon (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Son, Aran (Department of Oral Biology, Yonsei University College of Dentistry) ;
  • Park, Wonse (Department of Advanced General Dentistry, Yonsei University College of Dentistry) ;
  • Shin, Dong Min (Department of Oral Biology, Yonsei University College of Dentistry)
  • Received : 2015.01.26
  • Accepted : 2015.03.09
  • Published : 2015.03.31

Abstract

The gingival epithelium of the oral cavity is constantly exposed to exogenous stimuli such as bacterial toxins, allergens, and thermal changes. These exogenous stimuli are resisted by innate host defense in gingival epithelial cells. However, it is unclear exactly how the exogenous stimuli affect detrimentally on the human gingival epithelial cells. Here, we investigated whether the allergen, such as house dust mite (HDM) extract, is linked to $Ca^{2+}$ signaling and proinflammatory cytokine expression in primary cultured human gingival epithelial cells. HDM extract induced an increase in intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) in a dose-dependent manner. Extracellular $Ca^{2+}$ depletion did not affected on the HDM extract-induced increase in $[Ca^{2+}]_i$. The HDM extract-induced increase in $[Ca^{2+}]_i$ was abolished by the treatment with U73122 and 2-APB, which are inhibitors of phospholipase C (PLC) and inositol 1,4,5-trisphosphate ($IP_3$) receptor. Moreover, HDM extract induced the mRNA expression of pro-inflammatory cytokine, interleukin (IL)-8. These results suggest that HDM extract triggers $PLC/IP_3$-dependent $Ca^{2+}$ signaling and IL-8 mRNA expression in primary cultured human gingival epithelial cells.

Keywords

References

  1. Nogueira AV, Nokhbehsaim M, Eick S, Bourauel C, Jager A, Jepsen S, Cirelli JA, Deschner J. Regulation of visfatin by microbial and biomechanical signals in PDL cells. Clin Oral Investig. 2014;18:171-178. doi: 10.1007/s00784-013-0935-1.
  2. Al-Ghutaimel H, Riba H, Al-Kahtani S, Al-Duhaimi S. Common periodontal diseases of children and adolescents. Int J Dent. 2014;2014:850674. doi: http://dx.doi.org/10.1155/ 2014/850674.
  3. Jung UW, Kim CS, Choi SH, Kim S. Gingival coverage of iatrogenically denuded labial bone resulting from thermal trauma. Int J Periodontics Restorative Dent. 2013;33: 635-639. doi: 10.11607/prd.1024.
  4. Lourbakos A, Potempa J, Travis J, D'Andrea MR, Andrade-Gordon P, Santulli R, Mackie EJ, Pike RN. Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun. 2001;69: 5121-5130. doi: 10.1128/IAI.69.8.5121-5130.2001.
  5. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 2011;32:402-411. doi: 10.1016/j.it.2011.06.006.
  6. Mehta A, Sequeira PS, Sahoo RC, Kaur G. Is bronchial asthma a risk factor for gingival diseases? A control study. N Y State Dent J. 2009;75:44-46.
  7. Stensson M, Wendt LK, Koch G, Oldaeus G, Ramberg P, Birkhed D. Oral health in young adults with long-term, controlled asthma. Acta Odontol Scand. 2011;69:158-164. doi: 10.3109/00016357.2010.547516.
  8. Adam E, Hansen KK, Astudillo Fernandez O, Coulon L, Bex F, Duhant X, Jaumotte E, Hollenberg MD, Jacquet A. The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism. J Biol Chem. 2006;281:6910-6923. doi: 10.1074/jbc.M507140200.
  9. Asokananthan N, Graham PT, Fink J, Knight DA, Bakker AJ, McWilliam AS, Thompson PJ, Stewart GA. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol. 2002;168: 3577-3585. doi: 10.4049/ jimmunol.168.7.3577.
  10. Kauffman HF, Tamm M, Timmerman JA, Borger P. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms. Clin Mol Allergy. 2006;4:5. doi:10.1186/1476-7961-4-5.
  11. Reed CE, Kita H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol. 2004;114:997-1008; quiz 1009. doi: 10. 1016/ j.jaci.2004.07.060. https://doi.org/10.1016/j.jaci.2004.07.060
  12. Pereira AL, Holzhausen M, Franco GC, Cortelli SC, Cortelli JR. Human beta-defensin 2 and protease activated receptor-2 expression in patients with chronic periodontitis. Arch Oral Biol. 2012;57:1609-1614. doi: http://dx.doi.org/10.1016/j.archoralbio.2012.04.018.
  13. Shimada T, Sugano N, Ikeda K, Shimada K, Iizuka T, Ito K. Protease-activated receptor 2 mediates interleukin-8 and intercellular adhesion molecule-1 expression in response to Aggregatibacter actinomycetemcomitans. Oral Microbiol Immunol. 2009;24:285-291. doi: 10.1111/j.1399-302X.2009.00507.x.
  14. Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drobak BK, Bjerrum PJ, Christensen SB, Hanley MR. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions. 1989;27:17-23. https://doi.org/10.1007/BF02222186
  15. Treiman M, Caspersen C, Christensen SB. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci. 1998;19: 131-135. https://doi.org/10.1016/S0165-6147(98)01184-5
  16. Cho HJ, Choi JY, Yang YM, Hong JH, Kim CH, Gee HY, Lee HJ, Shin DM, Yoon JH. House dust mite extract activates apical Cl(-) channels through protease-activated receptor 2 in human airway epithelia. J Cell Biochem. 2010;109: 1254-1263. doi: 10.1002/jcb.22511.
  17. Sun G, Stacey MA, Schmidt M, Mori L, Mattoli S. Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol. 2001;167:1014-1021. doi: 10.4049/ jimmunol.167.2.1014.
  18. Hong JH, Hong JY, Park B, Lee SI, Seo JT, Kim KE, Sohn MH, Shin DM. Chitinase activates protease-activated receptor-2 in human airway epithelial cells. Am J Respir Cell Mol Biol. 2008;39:530-535. doi: 10.1165/rcmb.2007-0410OC.
  19. Hyyppa T. Gingival IgE and histamine concentrations in patients with asthma and in patients with periodontitis. J Clin Periodontol. 1984;11:132-137. https://doi.org/10.1111/j.1600-051X.1984.tb00841.x
  20. Ostergaard PA. IgA levels, bacterial carrier rate, and the development of bronchial asthma in children. Acta Pathol Microbiol Scand C. 1977;85:187-195.
  21. Takahashi N, Matsuda Y, Yamada H, Tabeta K, Nakajima T, Murakami S, Yamazaki K. Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation. J Dent Res. 2014;93:1141-1147. doi: 10.1177/0022034514552826.
  22. Belton CM, Goodwin PC, Fatherazi S, Schubert MM, Lamont RJ, Izutsu KT. Calcium oscillations in gingival epithelial cells infected with Porphyromonas gingivalis. Microbes Infect. 2004;6:440-447. doi: 10.1016/j.micinf.2004.01.007.
  23. Oikawa M, Saino T, Kimura K, Kamada Y, Tamagawa Y, Kurosaka D, Satoh Y. Effects of protease-activated receptors (PARs) on intracellular calcium dynamics of acinar cells in rat lacrimal glands. Histochem Cell Biol. 2013;140:463-476. doi: 10.1007/s00418-013-1082-0.
  24. Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev. 2012;92:39-74. doi: 10.1152/physrev.00011.2011.
  25. Chun J, Prince A. Activation of Ca2+-dependent signaling by TLR2. J Immunol. 2006;177:1330-1337. doi: 10.4049/jimmunol.177.2.1330.