DOI QR코드

DOI QR Code

GENERALIZATION OF EXTENDED APPELL'S AND LAURICELLA'S HYPERGEOMETRIC FUNCTIONS

  • Khan, N.U. (Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University) ;
  • Ghayasuddin, M. (Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University)
  • Received : 2014.12.10
  • Accepted : 2015.01.15
  • Published : 2015.03.25

Abstract

Recently, Liu and Wang generalized Appell's and Lauricella's hypergeometric functions. Motivated by the work of Liu and Wang, the main object of this paper is to present new generalizations of Appell's and Lauricella's hypergeometric functions. Some integral representations, transformation formulae, differential formulae and recurrence relations are obtained for these new generalized Appell's and Lauricella's functions.

Keywords

References

  1. E. Ozergin, M. A. Ozarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
  2. E. M. Weisstein, Mellin Transform from MathWorld, http://mathworld.wolfram.com.
  3. H. Liu and W. Wang, Some generating relations for extended Appell's and Lauricella's hypergeometric functions, Rocky Mountain Journal of Mathematics, (To appear).
  4. H. M. Srivastava and H. L. Manocha, A tretise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York (1984).
  5. L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, UK (1960).
  6. M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78(1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
  7. M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159(2004), no. 2, 589-602. https://doi.org/10.1016/j.amc.2003.09.017
  8. M. A. Ozarslan and E. Ozergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling 52(2010), 1825-1833. https://doi.org/10.1016/j.mcm.2010.07.011
  9. P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: harmonic sums, Theoret. Comput. Sci. 144(1-2)(1995), 3-58. https://doi.org/10.1016/0304-3975(95)00002-E
  10. R. K. Parmar, A New Generalization of Gamma, Beta, Hypergeometric and Confluent Hypergeometric Functions, LE MATEMATICHE, vol. LXVIII(2013), 33-52.

Cited by

  1. A NOTE ON GENERALIZED EXTENDED WHITTAKER FUNCTION vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.325