References
- E. Ozergin, M. A. Ozarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
- E. M. Weisstein, Mellin Transform from MathWorld, http://mathworld.wolfram.com.
- H. Liu and W. Wang, Some generating relations for extended Appell's and Lauricella's hypergeometric functions, Rocky Mountain Journal of Mathematics, (To appear).
- H. M. Srivastava and H. L. Manocha, A tretise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York (1984).
- L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, UK (1960).
- M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78(1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
- M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159(2004), no. 2, 589-602. https://doi.org/10.1016/j.amc.2003.09.017
- M. A. Ozarslan and E. Ozergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling 52(2010), 1825-1833. https://doi.org/10.1016/j.mcm.2010.07.011
- P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: harmonic sums, Theoret. Comput. Sci. 144(1-2)(1995), 3-58. https://doi.org/10.1016/0304-3975(95)00002-E
- R. K. Parmar, A New Generalization of Gamma, Beta, Hypergeometric and Confluent Hypergeometric Functions, LE MATEMATICHE, vol. LXVIII(2013), 33-52.
Cited by
- A NOTE ON GENERALIZED EXTENDED WHITTAKER FUNCTION vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.325