DOI QR코드

DOI QR Code

망간산화물(birnessite)에 의한 수용액 중 Tetracycline의 산화-변환반응에 대한 연구

Oxidative Transformation of Tetracycline in Aqueous Solution by Birnessite

  • 엄원숙 (서울과학기술대학교 환경공학과) ;
  • 김소희 (서울과학기술대학교 환경공학과) ;
  • 신현상 (서울과학기술대학교 환경공학과)
  • Eom, Won-Suk (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Kim, So-Hui (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 투고 : 2014.12.26
  • 심사 : 2015.02.05
  • 발행 : 2015.02.28

초록

본 연구에서는 잔류의약물질로써 환경에서 노출 빈도가 높은 항생물질인 Tetracycline (TTC)을 대상으로 수용액 상에서의 망간산화물(birnessite)을 이용한 산화-변환 반응을 통한 제거와 용존성 자연유기물인 휴믹산(HA) 존재에 따른 영향을 조사하였다. TTC의 산화-변환 제거 특성 실험은 다양한 반응조건(반응시간, 망간산화물 주입량 및 pH 등)에서 회분식으로 조사하였으며, HA의 영향은 pH (3~9)와 HA농도 변화에 따라 조사하였다. 실험결과는 유사-일차 반응속도식을 적용하여 해석하였으며, 본 실험조건(TTC=0.25 mM, ${\delta}-MnO_2=1.0g/L$)에서의 TTC의 산화-변환 제거 반응속도상수(k, $hr^{-1}$)는 pH가 감소함에 따라 0.98 (pH 9)에서 2.97 (pH 3)로 일정하게 증가하였고, 망간산화물 주입량(1~2 g/L)이 2배 증가할 때 반응속도 상수는 약 1.3배 정도 증가하였다. HA (5 mg-C/L) 존재 시 망간산화물에 의한 TTC 변환제거는 $pH{\geq}6$에서 반응효율 상승을 나타냈으며, HA의 주입농도(1~10 mg-C/L, at pH 6)의 증가에 따라 일정하게 증가함을 확인하였다. 이상에서 얻은 연구결과는 기존 문헌에 제시된 TTC 반응기작과 비교 해석하였고, 망간산화물을 매개로 한 TTC의 산환-변환 제거 반응특성과 HA의 존재가 미치는 영향에 대하여 고찰하였다.

An investigation on the removals of tetracycline (TTC), which is a family of antibiotics widely founded in the environment, from the aqueous solution by birnessite(${\delta}-MnO_2$)-mediated oxidative transformation was described. This study also examined the potential effect of the naturally occurring substances, humic acid (HA) on the oxidative transformation. The experiment was carried out in various conditions (reaction time, Mn oxide loadings, pH) and in the presence of HA as a batch test. The removals of TTC followed pseudo-first order reactions, and rate constants (k, $hr^{-1}$) for the removals of TTC were constantly increased with decreasing pH from 0.98 (pH 9) to 2.97 (pH 3). The rate constants also increased about 1.3 times when the birnessite loading increased from 1 to 2 g/L. Presence of HA (5 mg-C/L, at $pH{\geq}6$) caused some enhancement in the removals of TTC as compared to the control, and also showed the removal efficiencies of TTC in the birnessite mediated systems (TTC=0.25 mM, ${\delta}-MnO_2=2.0g/L$, pH 6) increased with increasing HA concentrations (1~10 mg-C/L). The results obtained from the oxidative transformation of TTC and the effect of HA were discussed in terms of reaction characteristics and mechanism.

키워드

참고문헌

  1. National Institute of Environmental Research, Rep. of Korea, "Study on the emission sources and behavior of pharmaceuticals in environment(III)," final Report(2010).
  2. Camona, E., Andrew, V. and Pico, Y., "Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water," Sci. Total Eviron., 484(15), 53-63(2014). https://doi.org/10.1016/j.scitotenv.2014.02.085
  3. Maria, G., Kateřina, D., Jens, A., Spiros, A. and Fabio, F., "Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation," New Biotechnol., 32(1), 147-156(2014). https://doi.org/10.1016/j.nbt.2014.01.001
  4. Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J. and Snyder, S. A., "Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters," Water Res., 41(5), 1013-1021(2007). https://doi.org/10.1016/j.watres.2006.06.034
  5. Cincinelli, A. Martellini, T., Coppini, E., Fibbi, D. and Katsoyiannis, A., "Nanotechnologies for Removal of Pharmaceuticals and Personal Care Products from Water and Wastewater. A Review," J. Nanosci. Nanotech., 15(5), 3333-3347(2015). https://doi.org/10.1166/jnn.2015.10036
  6. Ferrari, B., Paxéus, N., Giudice, R. L. and Pollio. A., "Ecotoxicological impact of pharmaceuticals found in treated wastewaters; study of carbamazepine, clofibric acid, and diclofenac," Ecotoxicol. Environ. Saf., 55(3), 359-370(2003). https://doi.org/10.1016/S0147-6513(02)00082-9
  7. Polubesova, T. and Chefetz, B., "DOM-Affected Transformation of Contaminants on Mineral Surfaces: A Review," Critic. Rev. Environ. Sci. Technol., 44(3), 223-254(2014). https://doi.org/10.1080/10643389.2012.710455
  8. Zhang, H., "Metal oxide-facilitated oxidation of antibacterial agent," Ph. D. thesis, Georgia Institute of Technol., USA(2004).
  9. Bollag J. M., Myers C., Pal S. and Huang P. M., "The role of abiotic and biotic catalysts in the transformation of phenol compounds," In Envirnmental Impact of Soil Components Interactions: Natural and Anthropogenic Organics (Haung, P. M., Berthelin, J., Boallg, J. M., McGill, W. B., Pake, A. L. eds.), CRC Press, Boca Raton, FL, pp. 299-310(1995).
  10. Shindo, H. and Huang, P. M., "Role of Mn(IV) oxide in abiotic formation of humic substances in the environment," Nature (London), 298, 363-365(1982). https://doi.org/10.1038/298363a0
  11. Blalk, H. M., Simpson, A. J. and Pedersen, J. A., "Cross-coupling of sulfamide antimicrobial agents with model humic constituents," Environ. Sci. Technol., 39, 4463-4473(2005). https://doi.org/10.1021/es0500916
  12. Kang. K. H., Dec, J., park. H. and Bollag, J. M., "Effect of phenolic mediators and humic acid on cyprodinil transformation in the presence of birnessite," Water Res., 38(11), 2737-2745(2004). https://doi.org/10.1016/j.watres.2004.03.018
  13. Choi, C. K., Eom, W. S. and Shin, H. S. "Effect of Phenolic Mediatiors and Humic acid on the Removal of 1-Indanone Using Manganese Oxide," J. Korean Soc. Environ. Eng., 34, (7), 445-453(2012). https://doi.org/10.4491/KSEE.2012.34.7.445
  14. Zhang, H., Chen, W. R. and Huang, C. H., "Kinetic Modeling of Oxidation of Antibacterial Agents by Mnaganese Oxide," Environ. Sci. Technol., 42, 5548-5554(2008). https://doi.org/10.1021/es703143g
  15. Leenheer, J. A.,. McKnight, D. M., Thurman, E. M. and MacCarthy, P., Humic Substances in the Suwannee River, Georgia: Interaction, Properties and Proposed Structure, US Geology Survey, Open-File Report 85-557, Denver, Colorado(1989).
  16. Gu, C., Karthikeyan, K. G., Sibley, S. D. and Pedersen, J. A., "Complexation of the antibiotic tetracycline with humic acid," Chemosphere, 66(8), 1494-1501(2007). https://doi.org/10.1016/j.chemosphere.2006.08.028
  17. Piepenbrock, A., Schroder, C. and Kappler, A., "Electron Transfer from Humic Substances to Biogenic and Abiogenic Fe(III) Oxyhydroxide Minerals," Environ. Sci. Technol., 48(3), 1656-1664(2014). https://doi.org/10.1021/es404497h
  18. Feitosa, F. J., Hanna, K. and Chiron, S., "Adsorption and transformation of elected human-used macrolide antibacterial agents with iron(III) and manganese (IV) oxides," Environ. Pollut., 157(4), 1317-1322(2009). https://doi.org/10.1016/j.envpol.2008.11.048
  19. Chen, W. R., "Interations of tetracycline antibiotics with dissolved metal ions and metal oxide," Ph.D thesis, Georgia Institute of Technology, Atlanta(2008).
  20. Chen, W. R. and Huang, C. H., "Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide," Environ. Pollut., 159(5), 1092-1100(2011). https://doi.org/10.1016/j.envpol.2011.02.027
  21. Halling-Sørensen, B., Sengeløv, G. and Tjørnelund, J., "Toxicity of Tetracyclines and Tetracycline Degradation Products to Environmentally Relevant Bacteria, Including Selected Tetracycline-Resistant Bacteria," Arch. Environ. Contam. Toxicol. 42(3), 263-271(2002) https://doi.org/10.1007/s00244-001-0017-2
  22. Remucal, C. K. and Ginder-Vogal, M., "A critical review of the reactivity of manganese oxides with organic contaminants," Environ. Sci.: Pro. Impacts, 16, 1247-1266(2014). https://doi.org/10.1039/c3em00703k
  23. Shin, H. S., Lim, D. M. and Kang, K. H., "Reaction kinetics and transformation products of 1-naphthol by Mn oxidemediated oxidative reaction," J. Hazard. Mater., 165(1-3), 540-547(2009). https://doi.org/10.1016/j.jhazmat.2008.10.027
  24. Kulshrestham, P., Giese, R. F. and Aga, D. S., "Investingating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil," Environ. Sci. Technol., 38, 4097-4105(2004). https://doi.org/10.1021/es034856q
  25. Xu, L., Xu, C., Zhao, M., Qiu, Y. and Sheng, G. D., "Oxidative removal of aqueous steroid estrogen by manganese oxides," Water Res., 42(20), 5039-5044(2008).