DOI QR코드

DOI QR Code

Biogenic Opal Production and Paleoclimate Change in the Wilkes Land Continental Rise (East Antarctica) during the Mid-to-late Miocene (IODP Exp 318 Site U1359)

동남극 윌크스랜드 대륙대의 마이오세 중-후기 동안 생물기원 오팔 생산과 고기후 변화(IODP Exp 318 Site U1359)

  • Song, Buhan (Department of Oceanography, College of Natural Sciences, Pusan National University) ;
  • Khim, Boo-Keun (Department of Oceanography, College of Natural Sciences, Pusan National University)
  • 송부한 (부산대학교 자연과학대학 해양학과) ;
  • 김부근 (부산대학교 자연과학대학 해양학과)
  • Received : 2014.09.21
  • Accepted : 2015.01.19
  • Published : 2015.03.30

Abstract

A 450 m-long sediment section was recovered from Hole U1359D located at the eastern levee of the Jussieau submarine channel on the Wilkes Land continental rise (East Antarctica) during IODP Expedition 318. The age model for Hole U1359D was established by paleomagnetic stratigraphy and biostratigraphy, and the ages of core-top and core-bottom were estimated to be about 5 Ma and 13 Ma, respectively. Biogenic opal content during this period varied between 3% and 60%. In the Southern Ocean, high biogenic opal content generally represents warm climate characterized by the increased light availability due to the decrease of sea-ice distribution. The surface water productivity change in terms of biogenic opal content at about 10.2 Ma in the Wilkes Land continental rise was related to the development of Northern Component Water. After about 10.2 Ma, more production of Northern Component Water in the North Atlantic caused to increase heat transport to the Southern Ocean, resulting in the enhanced diatom production. Miocene isotope events (Mi4~Mi7), which are intermittent cooling intervals during the Miocene, appeared to be correlated to the low biogenic opal contents, but further refinement was required for precise correlation. Biogenic opal content decreased abruptly during 6 Ma to 5.5 Ma, which most likely corresponds to the Messinian salinity crisis. Short-term variation of biogenic opal content was related to the extent of sea-ice distribution associated with the location of Antarctic Polar Front that was controlled by glacial-interglacial paleoclimate change, although more precise dating and correlation will be necessary. Diatom production in the Wilkes Land continental rise increased during the interglacial periods because of the reduced sea-ice distribution and the southward movement of Antarctic Polar Front.

Keywords

References

  1. Abelmann A, Gersonde R (1991) Biosiliceous particle flux in the Southern Ocean. Mar Chem 35:503-536 https://doi.org/10.1016/S0304-4203(09)90040-8
  2. Anderson J, Kurtz D, Domack E, Balshaw K (1980) Glacial and glacial marine sediments of the Antarctic continental shelf. J Geol 88:399-414 https://doi.org/10.1086/628524
  3. Bradtmiller LI, Anderson RF, Fleisher MQ, Burckle LH (2009) Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean. Paleoceanography 24:2214. doi:10.1029/2008PA001693
  4. Bareille G, Labracherie M, Bertrand P, Labeyrie L, Lavaux G, Dignan M (1998) Glacial-interglacial changes in the accumulation rates of major biogenic components in Southern Indian Ocean sediments. J Marine Syst 17:527-539 https://doi.org/10.1016/S0924-7963(98)00062-1
  5. Billups K (2002) Late Miocene through early Pliocene deep water circulation and climate change viewed from the sub-Antarctic South Atlantic. Palaeogeogr Palaeoclimatol Palaeecol 185:287-307 https://doi.org/10.1016/S0031-0182(02)00340-1
  6. Blum P (1997) Physical properties handbook: a guide to the shipboard measurement of physical properties of deepsea cores. Ocean Drilling Program Technical Note 26. http://www.odp.tamu.edu/publications/tnotes/tn26/INDEX.HTM
  7. Butzin M, Lohmann G, Bickert T (2011) Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records. Paleoceanography 26:1203. doi: 10.1029/2009PA001901
  8. Cande SC, Mutter JC (1982) A revised identification of the oldest sea-floor spreading anomalies between Australia and Antarctica. Earth Planet Sci Lett 58:151-160 https://doi.org/10.1016/0012-821X(82)90190-X
  9. Charles CD, Fairbanks RG (1992) Evidence from Southern Ocean sediments for the effect of North Atlantic deepwater flux on climate. Nature 355:416-419 https://doi.org/10.1038/355416a0
  10. Chase Z, Anderson RF, Fleisher MQ, Kubik PW (2003) Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep-Sea Res Pt II 50:799-832 https://doi.org/10.1016/S0967-0645(02)00595-7
  11. Collins LS, Coates AG, Berggren WA, Aubry MP, Zhang J (1996) The late Miocene Panama isthmian strait. Geology 24:687-690 https://doi.org/10.1130/0091-7613(1996)024<0687:TLMPIS>2.3.CO;2
  12. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715-1732 https://doi.org/10.1016/0016-7037(81)90006-5
  13. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric $CO_2$. Nature 421:245-249 https://doi.org/10.1038/nature01290
  14. De Santis L, Brancolini G, Donda F (2003) Seismostratigraphic analysis of the Wilkes Land continental margin (East Antarctica): influence of glacially driven processes on the Cenozoic deposition. Deep-Sea Res Pt II 50:1563-1594 https://doi.org/10.1016/S0967-0645(03)00079-1
  15. Dezileau L, Reyss JL, Lemoine F (2003) Late Quaternary changes in biogenic opal fluxes in the Southern Indian Ocean. Mar Geol 202:143-158 https://doi.org/10.1016/S0025-3227(03)00283-4
  16. Ebert E, Schramm J, Curry J (1995) Disposition of solar radiation in sea ice and the upper ocean. J Geophys Res-Oceans 100:15965-15975 https://doi.org/10.1029/95JC01672
  17. Eittreim SL, Cooper AK, Wannesson J (1995) Seismic stratigraphic evidence of ice-sheet advances on the Wilkes Land margin of Antarctica. Sediment Geol 96:131-156 https://doi.org/10.1016/0037-0738(94)00130-M
  18. Emery WJ, Meincke J (1986) Global water masses-summary and review. Oceanol Acta 9:383-391
  19. Escutia C, Brinkhuis H, Klaus A, the Expedition 318 Scientists (2011) Wilkes Land glacial history. In: Proceedings of the Integrated Ocean Drilling Program, 318, Tokyo. doi:10.2204/ iodp.proc.318.2011
  20. Escutia C, Eittreim S, Cooper A, Nelson C (1997) Cenozoic glaciomarine sequences on the Wilkes Land continental rise, Antarctica. In: Proceedings of the VII International Symposium on Antarctic Earth Sciences, vol 7. Terra Antarctica Publication, pp 791-795
  21. Escutia C, Eittreim S, Cooper A, Nelson C (2000) Morphology and acoustic character of the Antarctic Wilkes Land turbidite systems: ice-sheet-sourced versus river-sourced fans. J Sediment Res 70:84-93 https://doi.org/10.1306/2DC40900-0E47-11D7-8643000102C1865D
  22. Escutia C, De Santis L, Donda F, Dunbar RB, Cooper AK, Barancolini G, Eittreim SL (2005) Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediment. Global Planet Change 45:51-81 https://doi.org/10.1016/j.gloplacha.2004.09.010
  23. Ferraccioli F, Coren F, Bozzo E, Zanolla C, Gandolfi S, Tabacco I, Frezzotti M (2001) Rifted (?) crust at the East Antarctic Craton margin: Gravity and magnetic interpretation along a traverse across the Wilkes subglacial basin region. Earth Planet Sci Lett 192:407-421 https://doi.org/10.1016/S0012-821X(01)00459-9
  24. Flower BP, Kennett JP (1994) The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537-555 https://doi.org/10.1016/0031-0182(94)90251-8
  25. Francois R, Altabet MA, Yu E, Sigman DM, Bacon MP, Frank M, Bohermann G, Bareille G, Labeyrie LD (1997) Contribution of Southern Ocean surface-water stratification to low atmospheric $CO_2$ concentrations during the last glacial period. Nature 389:929-935 https://doi.org/10.1038/40073
  26. Frank M, Whiteley N, Kasten S, Hein JR, O'Nions K (2002) North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: evidence from Nd and Pb isotopes in ferromanganese crusts. Paleoceanography 17:12-1. doi:10.1029/2000PA000606
  27. Goodell HG (1973) Marine sediments of the Southern Oceans. American Geographysical Society, Antarctic Map Folio Series 17:1-9
  28. Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, UK, 401 p
  29. Hanna E (1996) The role of Antarctic sea ice in global climate change. Prog Phys Geogr 20:371-401 https://doi.org/10.1177/030913339602000401
  30. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235: 1156-1167 https://doi.org/10.1126/science.235.4793.1156
  31. Hillenbrand C-D, Futterer D (2001) Neogene to Quaternary deposition of opal on the continental rise west of the Antarctic Peninsula, ODP leg 178, Sites 1095, 1096, and 1101. In: Barker PF, Camerlenghi A, Acton GD, Ramsay ATS (eds) Proceedings of the Ocean Drilling Program, Scientific Results 178, pp 1-33
  32. Hofmann EE, Klinck JM, Lascara CM, Smith DA (1996) Water mass distribution and circulation west of the Antarctic Peninsula and Bransfield Strait. In: Ross RM, Hofmann EE, Quentin LB (eds) Foundations for ecological research west of the Antarctic Peninsula, Antarctic Research Series, 70:61-80
  33. Ivanovic RF, Valdes PJ, Flecker R, Gutjahr M (2013) Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis. Clim Past Discuss 9:4807-4853 https://doi.org/10.5194/cpd-9-4807-2013
  34. Jones SM, Maclennan J (2005) Crustal flow beneath Iceland. J Geophys Res 110:B09410. doi:10.1029/2004JB003592
  35. Krijgsman W, Hilgen F, Raffi I, Sierro F, Wilson D (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652-655 https://doi.org/10.1038/23231
  36. Mackensen A, Bickert T (1999) Stable carbon isotopes in benthic foraminifera: proxies for deep and bottom water circulation and new production. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography, Springer, Berlin Heidelberg, pp 229-254
  37. Massom R, Reid P, Stammerjohn S, Raymond B, Fraser A, Ushio S (2013) Change and variability in East Antarctic sea ice seasonality, 1979/80-2009/10. PLoS ONE 8:e64756 https://doi.org/10.1371/journal.pone.0064756
  38. Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J Geophys Res Oceans 104: 3059-3073 https://doi.org/10.1029/1998JC900032
  39. Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36:1415-1426 https://doi.org/10.1016/0198-0149(89)90092-7
  40. Mortlock RA, Charles CD, Froelich PN, Zibello MA, Saltzman J, Hats JD, Burckle LH (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351:220-223 https://doi.org/10.1038/351220a0
  41. Nisancioglu KH, Raymo ME, Stone PH (2003) Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway. Paleoceanography 18:1006. doi:10.1029/2002PA000767
  42. Petit J, Jouzel J, Raynaud D, Barkov NI, Barnola J, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429-436 https://doi.org/10.1038/20859
  43. Poore HR, Samworth R, White NJ, Jones SM, McCave IN (2006) Neogene overflow of Northern Component Water at the Greenland-Scotland Ridge. Geochem Geophys Geosyst 7:Q06010. doi:10.1029/2005GC001085
  44. Porter-Smith R (2003) Bathymetry of the George Vth Land shelf and slope. Deep-Sea Res Pt II 50:1337-1341 https://doi.org/10.1016/S0967-0645(03)00069-9
  45. Ragueneau O, Treguer P, Leynaert A, Anderson R, Brzezinski M, DeMaster D, Dugdale RC, Dymond J, Fischer G, Francois R, Heinze C, Maier-Reimer E, Martin-Jezequel V, Nelson DM, Queguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26:317-365 https://doi.org/10.1016/S0921-8181(00)00052-7
  46. Reid JL (1979) On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep-Sea Res 26:1199-1223 https://doi.org/10.1016/0198-0149(79)90064-5
  47. Sarmiento J, Toggweiler J (1984) A new model for the role of the oceans in determining atmospheric p$CO_2$. Nature 308:621-624 https://doi.org/10.1038/308621a0
  48. Shin S, Liu Z, Otto-Bliesner BL, Kutzbach JE, Vavrus SJ (2003) Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation. Geophys Res Lett 30:1096. doi:10.1029/2002GL015513
  49. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859-869 https://doi.org/10.1038/35038000
  50. Sprenk D, Weber ME, Kuhn G, Rosen P, Frank M, Molina-Kescher M, Liebetrau V, Rohling HG (2013) Southern Ocean bioproductivity during the last glacial cycle-new detection method and decadal-scale insight from the Scotia Sea. Geol Soc London Sp Pub 381:245-261 https://doi.org/10.1144/SP381.17
  51. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air $CO_2$ flux based on climatological surface ocean $CO_2$, and seasonal biological and temperature effects. Deep-Sea Res Pt II 49:1601-1622 https://doi.org/10.1016/S0967-0645(02)00003-6
  52. Tauxe L, Stickley C, Sugisaki S, Bijl P, Bohaty S, Brinkhuis H, Escutia C, Flores JA, Iwai M, Jimenez-Espejo F, Mckay R, Passchier S, Pross J, Riesselan C, Rohl U, Sangiorgi F, Welsh K, Klaus A, Fehr A, Bendle JAP, Dunbar R, Gonzalez J, Hayden T, Olney MP, Pekar SF, Shrivastava PK, van de Fleridt T, Williams T, Yamane M (2012) Chronostratigraphic framework for the IODP expedition 318 cores from the Wilkes Land margin: constraints for paleoceanographic reconstruction. Paleoceanography 27:2214. doi:10.1029/2012PA002308
  53. Vlastelic I, Carpentier M, Lewin E (2005) Miocene climate change recorded in the chemical and isotopic (Pb, Nd, Hf) signature of Southern Ocean sediments. Geochem Geophys Geosyst 6:3003. doi:10.1029/2004GC000819
  54. Vogt P (1972) The Faeroe-Iceland-Greenland aseismic ridge and the western boundary undercurrent. Nature 239:79-81 https://doi.org/10.1038/239079a0
  55. Wefer G, Fischer G (1991) Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem 35:597-613 https://doi.org/10.1016/S0304-4203(09)90045-7
  56. Westerhold T, Bickert T, Rohl U (2005) Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations. Palaeogeogr Palaeocl Palaeoecol 217:205-222 https://doi.org/10.1016/j.palaeo.2004.12.001
  57. Woodruff F, Savin SM (1989) Miocene deepwater oceanography. Paleoceanography 4:87-140 https://doi.org/10.1029/PA004i001p00087
  58. Wright JD, Miller KG, Fairbanks RG (1991) Evolution of modern deepwater circulation: evidence from the late Miocene Southern Ocean. Paleoceanography 6:275-290 https://doi.org/10.1029/90PA02498
  59. Wright JD, Miller KG, Fairbanks RG (1992) Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography 7:357-389 https://doi.org/10.1029/92PA00760
  60. Wright JD, Miller KG (1993) Southern Ocean influences on late Eocene to Miocene deepwater circulation. Antar Res S 60:1-25 https://doi.org/10.1029/AR060p0001
  61. Wright JD, Miller KG (1996) Control of North Atlantic Deep Water Circulation by the Greenland-Scotland Ridge. Paleoceanography 11:157-170 https://doi.org/10.1029/95PA03696
  62. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686-693 https://doi.org/10.1126/science.1059412

Cited by

  1. Relationship between δ 15 N values of bulk sediments and total organic carbon concentration in response to orbital-scale biogenic opal production in the Bering slope area over the last 600 kyrs 2017, https://doi.org/10.1016/j.quaint.2017.05.041