참고문헌
- Alter, B.P., Greene, M.H., Velazquez, I., and Rosenberg, P.S. (2003). Cancer in Fanconi anemia. Blood 101, 2072. https://doi.org/10.1182/blood-2002-11-3597
- Bennett, L.M., McAllister, K.A., Blackshear, P.E., Malphurs, J., Goulding, G., Collins, N.K., Ward, T., Bunch, D.O., Eddy, E.M., Davis, B.J., et al. (2000). BRCA2-null embryonic survival is prolonged on the BALB/c genetic background. Mol. Carcinog. 28, 174-183. https://doi.org/10.1002/1098-2744(200007)28:3<174::AID-MC6>3.0.CO;2-C
- Callens, N., Dumont, M., Begue, A., Lint, C., Baert, J.L., Simard, J., and de Launoit, Y. (2002). Genomic organization and expression of the mouse Brca2 gene. Mamm. Genome 13, 352-358
- Cheung, A.M., Hande, M.P., Jalali, F., Tsao, M.S., Skinnider, B., Hirao, A., McPherson, J.P., Karaskova, J., Suzuki, A., Wakeham, A., et al. (2002). Loss of Brca2 and p53 synergistically promotes genomic instability and deregulation of T-cell apoptosis. Cancer Res. 62, 6194-6204.
- Cheung, A.M., Elia, A., Tsao, M.S., Done, S., Wagner, K.U., Hennighausen, L., Hakem, R., and Mak, T.W. (2004). Brca2 deficiency does not impair mammary epithelium development but promotes mammary adenocarcinoma formation in p53(+/-) mutant mice. Cancer Res. 64, 1959-1965. https://doi.org/10.1158/0008-5472.CAN-03-2270
- Choi, E., Park, P.G., Lee, H.O., Lee, Y.K., Kang, G.H., Lee, J.W., Han, W., Lee, H.C., Noh, D.Y., Lekomtsev, S., et al. (2012). BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev. Cell 22, 295-308 https://doi.org/10.1016/j.devcel.2012.01.009
- Connor, F., Bertwistle, D., Mee, P.J., Ross, G.M., Swift, S., Grigorieva, E., Tybulewicz, V.L., and Ashworth, A. (1997). Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat. Genet. 17, 423-430. https://doi.org/10.1038/ng1297-423
- Couch, F.J., Farid, L.M., DeShano, M.L., Tavtigian, S.V., Calzone, K., Campeau, L., Peng, Y., Bogden, B., Chen, Q., Neuhausen, S., et al. (1996). BRCA2 germline mutations in male breast cancer cases and breast cancer families. Nat. Genet. 13, 123-125. https://doi.org/10.1038/ng0596-123
- Dai, C., and Gu, W. (2010). p53 post-translational modification: deregulated in tumorigenesis. Trends Mol. Med. 16, 528-536. https://doi.org/10.1016/j.molmed.2010.09.002
- Dutt, S., Tseng, D., Ermann, J., George, T.I., Liu, Y.P., Davis, C.R., Fathman, C.G., and Strober, S. (2007). Naive and memory T cells induce different types of graft-versus-host disease. J. Immunol. 179, 6547-6554. https://doi.org/10.4049/jimmunol.179.10.6547
- Dutton, R.W., Bradley, L.M., and Swain, S.L. (1998). T cell memory. Ann. Rev. Immunol. 16, 201-223. https://doi.org/10.1146/annurev.immunol.16.1.201
- Evers, B., and Jonkers, J. (2006). Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene 25, 5885-5897 https://doi.org/10.1038/sj.onc.1209871
- Flores, K.G., McAllister, K.A., Greer, P.K., Wiseman, R.W., and Hale, L.P. (2002). Thymic model for examining BRCA2 expression and function. Mol. Carcinog. 35, 103-109 https://doi.org/10.1002/mc.10081
- Ford, D., Easton, D.F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D.T., Weber, B., Lenoir, G., Chang-Claude, J., et al. (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676-689 https://doi.org/10.1086/301749
- Friedman, L.S., Thistlethwaite, F.C., Patel, K.J., Yu, V.P., Lee, H., Venkitaraman, A.R., Abel, K.J., Carlton, M.B., Hunter, S.M., Colledge, W.H., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Res. 58, 1338-1343.
- Goggins, M., Schutte, M., Lu, J., Moskaluk, C.A., Weinstein, C.L., Petersen, G.M., Yeo, C.J., Jackson, C.E., Lynch, H.T., Hruban, R.H., et al. (1996). Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 56, 5360-5364.
- Gretarsdottir, S., Thorlacius, S., Valgardsdottir, R., Gudlaugsdottir, S., Sigurdsson, S., Steinarsdottir, M., Jonasson, J.G., Anamthawat-Jonsson, K., and Eyfjord, J.E. (1998). BRCA2 and p53 mutations in primary breast cancer in relation to genetic instability. Cancer Res. 58, 859-862.
- Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. (1994). Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103-106. https://doi.org/10.1126/science.8016642
- Holloman, W.K. (2011). Unraveling the mechanism of BRCA2 in homologous recombination. Nat. Struct. Mol. Biol. 18, 748-754. https://doi.org/10.1038/nsmb.2096
- Howlett, N.G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die-Smulders, C., Persky, N., Grompe, M., Joenje, H., Pals, G., et al. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606-609 https://doi.org/10.1126/science.1073834
- Jonkers, J., Meuwissen, R., van der Gulden, H., Peterse, H., van der Valk, M., and Berns, A. (2001). Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418-425. https://doi.org/10.1038/ng747
- Jung, Y.S., Qian, Y., and Chen, X. (2010). Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 22, 1003-1012. https://doi.org/10.1016/j.cellsig.2010.01.013
- King, M.C., Marks, J.H., Mandell, J.B., and New York Breast Cancer Study, G. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643-646. https://doi.org/10.1126/science.1088759
- Kupfer, G.M. (2013). Fanconi anemia: a signal transduction and DNA repair pathway. Yale J. Biol. Med. 86, 491-497
- Lee, H., Trainer, A.H., Friedman, L.S., Thistlethwaite, F.C., Evans, M.J., Ponder, B.A., and Venkitaraman, A.R. (1999). Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1-10. https://doi.org/10.1016/S1097-2765(00)80182-3
- Ludwig, T., Chapman, D.L., Papaioannou, V.E., and Efstratiadis, A. (1997). Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 11, 1226-1241. https://doi.org/10.1101/gad.11.10.1226
- Ludwig, T., Fisher, P., Murty, V., and Efstratiadis, A. (2001). Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 20, 3937-3948 https://doi.org/10.1038/sj.onc.1204512
- Marx, G. (1997). Possible function found for breast cancer genes. Science 276, 531-532. https://doi.org/10.1126/science.276.5312.531
- McAllister, K.A., Bennett, L.M., Houle, C.D., Ward, T., Malphurs, J., Collins, N.K., Cachafeiro, C., Haseman, J., Goulding, E.H., Bunch, D., et al. (2002). Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. Cancer Res. 62, 990-994.
- Moran, A., O'Hara, C., Khan, S., Shack, L., Woodward, E., Maher, E.R., Lalloo, F., and Evans, D.G. (2012). Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam. Cancer 11, 235-242.
- Neuhausen, S., Gilewski, T., Norton, L., Tran, T., McGuire, P., Swensen, J., Hampel, H., Borgen, P., Brown, K., Skolnick, M., et al. (1996). Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer. Nat. Genet. 13, 126-128 https://doi.org/10.1038/ng0596-126
- Park, P.G., and Lee, H. (2008). Development of thymic lymphomas in mice disrupted of Brca2 allele in the thymus. Exp. Mol. Med. 40, 339-344. https://doi.org/10.3858/emm.2008.40.3.339
- Patel, K.J., Yu, V.P., Lee, H., Corcoran, A., Thistlethwaite, F.C., Evans, M.J., Colledge, W.H., Friedman, L.S., Ponder, B.A., and Venkitaraman, A.R. (1998). Involvement of Brca2 in DNA repair. Mol. Cell 1, 347-357 https://doi.org/10.1016/S1097-2765(00)80035-0
- Pellegrini, L., Yu, D.S., Lo, T., Anand, S., Lee, M., Blundell, T.L., and Venkitaraman, A.R. (2002). Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287-293. https://doi.org/10.1038/nature01230
- Rajan, J.V., Marquis, S.T., Gardner, H.P., and Chodosh, L.A. (1997) Developmental expression of Brca2 colocalizes with Brca1 and is associated with proliferation and differentiation in multiple tissues. Dev. Biol. 184, 385-401. https://doi.org/10.1006/dbio.1997.8526
- Ramus, S.J., Bobrow, L.G., Pharoah, P.D., Finnigan, D.S., Fishman, A., Altaras, M., Harrington, P.A., Gayther, S.A., Ponder, B.A., and Friedman, L.S. (1999). Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes Chromosomes Cancer 25, 91-96. https://doi.org/10.1002/(SICI)1098-2264(199906)25:2<91::AID-GCC3>3.0.CO;2-5
- Risch, H.A., McLaughlin, J.R., Cole, D.E., Rosen, B., Bradley, L., Fan, I., Tang, J., Li, S., Zhang, S., Shaw, P.A., et al. (2006) Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl. Cancer Inst. 98, 1694-1706. https://doi.org/10.1093/jnci/djj465
- Sharan, S.K., Morimatsu, M., Albrecht, U., Lim, D.S., Regel, E., Dinh, C., Sands, A., Eichele, G., Hasty, P., and Bradley, A. (1997). Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804-810. https://doi.org/10.1038/386804a0
- Shieh, S.Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334. https://doi.org/10.1016/S0092-8674(00)80416-X
- Sluss, H.K., Armata, H., Gallant, J., and Jones, S.N. (2004). Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol. Cell. Biol. 24, 976-984. https://doi.org/10.1128/MCB.24.3.976-984.2004
- Spain, B.H., Larson, C.J., Shihabuddin, L.S., Gage, F.H., and Verma, I.M. (1999). Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc. Natl. Acad. Sci. USA 96, 13920-13925. https://doi.org/10.1073/pnas.96.24.13920
- Suzuki, A., de la Pompa, J.L., Hakem, R., Elia, A., Yoshida, R., Mo, R., Nishina, H., Chuang, T., Wakeham, A., Itie, A., et al. (1997). Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev. 11, 1242-1252. https://doi.org/10.1101/gad.11.10.1242
- Tavtigian, S.V., Simard, J., Rommens, J., Couch, F., Shattuck-Eidens, D., Neuhausen, S., Merajver, S., Thorlacius, S., Offit, K., Stoppa-Lyonnet, D., et al. (1996). The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat. Genet. 12, 333-337 https://doi.org/10.1038/ng0396-333
- Thorslund, T., and West, S.C. (2007). BRCA2: a universal recombinase regulator. Oncogene 26, 7720-7730. https://doi.org/10.1038/sj.onc.1210870
- Wong, A.K., Pero, R., Ormonde, P.A., Tavtigian, S.V., and Bartel, P.L. (1997). RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272, 31941-31944. https://doi.org/10.1074/jbc.272.51.31941
- Yan, D.H., Wen, Y., Su, L.K., Xia, W., Wang, S.C., Zhang, S., Gan, L., Lee, D.F., Spohn, B., Frey, J.A., et al. (2004). A delayed chemically induced tumorigenesis in Brca2 mutant mice. Oncogene 23, 1896-1901. https://doi.org/10.1038/sj.onc.1207314
- Yu, J., Wang, Z., Kinzler, K.W., Vogelstein, B., and Zhang, L. (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 100, 1931-1936. https://doi.org/10.1073/pnas.2627984100
피인용 문헌
- Emerging roles of p53 and other tumour-suppressor genes in immune regulation vol.16, pp.12, 2016, https://doi.org/10.1038/nri.2016.99
- Precancer Atlas to Drive Precision Prevention Trials vol.77, pp.7, 2015, https://doi.org/10.1158/0008-5472.can-16-2346
- DNA repair gene expressions are related to bone marrow cellularity in myelodysplastic syndrome vol.70, pp.11, 2015, https://doi.org/10.1136/jclinpath-2016-204269
- Foxp3 expression in induced regulatory T cells is stabilized by C/EBP in inflammatory environments vol.19, pp.12, 2018, https://doi.org/10.15252/embr.201845995
- Recent Findings in the Regulation of Programmed Death Ligand 1 Expression vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.01337
- A STING to inflammation and autoimmunity vol.106, pp.1, 2019, https://doi.org/10.1002/jlb.4mir1018-397rr