DOI QR코드

DOI QR Code

Brca2 Deficiency Leads to T Cell Loss and Immune Dysfunction

  • Jeong, Jun-Hyeon (Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Jo, Areum (Samsung Genome Institute, Samsung Medical Center) ;
  • Park, Pilgu (Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Lee, Hyunsook (Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Lee, Hae-Ock (Samsung Genome Institute, Samsung Medical Center)
  • Received : 2014.11.10
  • Accepted : 2014.12.04
  • Published : 2015.03.31

Abstract

Germline mutations in the breast cancer type 2 susceptibility gene (BRCA2) are linked to familial breast cancer and the progressive bone marrow failure syndrome Fanconi anaemia. Established Brca2 mouse knockout models show embryonic lethality, but those with a truncating mutation at the C-terminus survive to birth and develop thymic lymphoma at an early age. To overcome early lethality and investigate the function of BRCA2, we used T cell-specific conditional Brca2 knockout mice, which were previously shown to develop thymic lymphoma at a low penetrance. In the current study we showed that the number of peripheral T cells, particularly na$\ddot{i}$ve pools, drastically declined with age. This decline was primarily ascribed to improper peripheral maintenance. Furthermore, heterozygous mice with one wild-type Brca2 allele manifested reduced T cell numbers, suggesting that Brca2 haploinsufficiency might also result in T cell loss. Our study reveals molecular events occurring in Brca2-deficient T cells and suggests that both heterozygous and homozygous Brca2 mutation may lead to dysfunction in T cell populations.

Keywords

References

  1. Alter, B.P., Greene, M.H., Velazquez, I., and Rosenberg, P.S. (2003). Cancer in Fanconi anemia. Blood 101, 2072. https://doi.org/10.1182/blood-2002-11-3597
  2. Bennett, L.M., McAllister, K.A., Blackshear, P.E., Malphurs, J., Goulding, G., Collins, N.K., Ward, T., Bunch, D.O., Eddy, E.M., Davis, B.J., et al. (2000). BRCA2-null embryonic survival is prolonged on the BALB/c genetic background. Mol. Carcinog. 28, 174-183. https://doi.org/10.1002/1098-2744(200007)28:3<174::AID-MC6>3.0.CO;2-C
  3. Callens, N., Dumont, M., Begue, A., Lint, C., Baert, J.L., Simard, J., and de Launoit, Y. (2002). Genomic organization and expression of the mouse Brca2 gene. Mamm. Genome 13, 352-358
  4. Cheung, A.M., Hande, M.P., Jalali, F., Tsao, M.S., Skinnider, B., Hirao, A., McPherson, J.P., Karaskova, J., Suzuki, A., Wakeham, A., et al. (2002). Loss of Brca2 and p53 synergistically promotes genomic instability and deregulation of T-cell apoptosis. Cancer Res. 62, 6194-6204.
  5. Cheung, A.M., Elia, A., Tsao, M.S., Done, S., Wagner, K.U., Hennighausen, L., Hakem, R., and Mak, T.W. (2004). Brca2 deficiency does not impair mammary epithelium development but promotes mammary adenocarcinoma formation in p53(+/-) mutant mice. Cancer Res. 64, 1959-1965. https://doi.org/10.1158/0008-5472.CAN-03-2270
  6. Choi, E., Park, P.G., Lee, H.O., Lee, Y.K., Kang, G.H., Lee, J.W., Han, W., Lee, H.C., Noh, D.Y., Lekomtsev, S., et al. (2012). BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev. Cell 22, 295-308 https://doi.org/10.1016/j.devcel.2012.01.009
  7. Connor, F., Bertwistle, D., Mee, P.J., Ross, G.M., Swift, S., Grigorieva, E., Tybulewicz, V.L., and Ashworth, A. (1997). Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat. Genet. 17, 423-430. https://doi.org/10.1038/ng1297-423
  8. Couch, F.J., Farid, L.M., DeShano, M.L., Tavtigian, S.V., Calzone, K., Campeau, L., Peng, Y., Bogden, B., Chen, Q., Neuhausen, S., et al. (1996). BRCA2 germline mutations in male breast cancer cases and breast cancer families. Nat. Genet. 13, 123-125. https://doi.org/10.1038/ng0596-123
  9. Dai, C., and Gu, W. (2010). p53 post-translational modification: deregulated in tumorigenesis. Trends Mol. Med. 16, 528-536. https://doi.org/10.1016/j.molmed.2010.09.002
  10. Dutt, S., Tseng, D., Ermann, J., George, T.I., Liu, Y.P., Davis, C.R., Fathman, C.G., and Strober, S. (2007). Naive and memory T cells induce different types of graft-versus-host disease. J. Immunol. 179, 6547-6554. https://doi.org/10.4049/jimmunol.179.10.6547
  11. Dutton, R.W., Bradley, L.M., and Swain, S.L. (1998). T cell memory. Ann. Rev. Immunol. 16, 201-223. https://doi.org/10.1146/annurev.immunol.16.1.201
  12. Evers, B., and Jonkers, J. (2006). Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene 25, 5885-5897 https://doi.org/10.1038/sj.onc.1209871
  13. Flores, K.G., McAllister, K.A., Greer, P.K., Wiseman, R.W., and Hale, L.P. (2002). Thymic model for examining BRCA2 expression and function. Mol. Carcinog. 35, 103-109 https://doi.org/10.1002/mc.10081
  14. Ford, D., Easton, D.F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D.T., Weber, B., Lenoir, G., Chang-Claude, J., et al. (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676-689 https://doi.org/10.1086/301749
  15. Friedman, L.S., Thistlethwaite, F.C., Patel, K.J., Yu, V.P., Lee, H., Venkitaraman, A.R., Abel, K.J., Carlton, M.B., Hunter, S.M., Colledge, W.H., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Res. 58, 1338-1343.
  16. Goggins, M., Schutte, M., Lu, J., Moskaluk, C.A., Weinstein, C.L., Petersen, G.M., Yeo, C.J., Jackson, C.E., Lynch, H.T., Hruban, R.H., et al. (1996). Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 56, 5360-5364.
  17. Gretarsdottir, S., Thorlacius, S., Valgardsdottir, R., Gudlaugsdottir, S., Sigurdsson, S., Steinarsdottir, M., Jonasson, J.G., Anamthawat-Jonsson, K., and Eyfjord, J.E. (1998). BRCA2 and p53 mutations in primary breast cancer in relation to genetic instability. Cancer Res. 58, 859-862.
  18. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. (1994). Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103-106. https://doi.org/10.1126/science.8016642
  19. Holloman, W.K. (2011). Unraveling the mechanism of BRCA2 in homologous recombination. Nat. Struct. Mol. Biol. 18, 748-754. https://doi.org/10.1038/nsmb.2096
  20. Howlett, N.G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die-Smulders, C., Persky, N., Grompe, M., Joenje, H., Pals, G., et al. (2002). Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606-609 https://doi.org/10.1126/science.1073834
  21. Jonkers, J., Meuwissen, R., van der Gulden, H., Peterse, H., van der Valk, M., and Berns, A. (2001). Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418-425. https://doi.org/10.1038/ng747
  22. Jung, Y.S., Qian, Y., and Chen, X. (2010). Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 22, 1003-1012. https://doi.org/10.1016/j.cellsig.2010.01.013
  23. King, M.C., Marks, J.H., Mandell, J.B., and New York Breast Cancer Study, G. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643-646. https://doi.org/10.1126/science.1088759
  24. Kupfer, G.M. (2013). Fanconi anemia: a signal transduction and DNA repair pathway. Yale J. Biol. Med. 86, 491-497
  25. Lee, H., Trainer, A.H., Friedman, L.S., Thistlethwaite, F.C., Evans, M.J., Ponder, B.A., and Venkitaraman, A.R. (1999). Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol. Cell 4, 1-10. https://doi.org/10.1016/S1097-2765(00)80182-3
  26. Ludwig, T., Chapman, D.L., Papaioannou, V.E., and Efstratiadis, A. (1997). Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 11, 1226-1241. https://doi.org/10.1101/gad.11.10.1226
  27. Ludwig, T., Fisher, P., Murty, V., and Efstratiadis, A. (2001). Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 20, 3937-3948 https://doi.org/10.1038/sj.onc.1204512
  28. Marx, G. (1997). Possible function found for breast cancer genes. Science 276, 531-532. https://doi.org/10.1126/science.276.5312.531
  29. McAllister, K.A., Bennett, L.M., Houle, C.D., Ward, T., Malphurs, J., Collins, N.K., Cachafeiro, C., Haseman, J., Goulding, E.H., Bunch, D., et al. (2002). Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. Cancer Res. 62, 990-994.
  30. Moran, A., O'Hara, C., Khan, S., Shack, L., Woodward, E., Maher, E.R., Lalloo, F., and Evans, D.G. (2012). Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam. Cancer 11, 235-242.
  31. Neuhausen, S., Gilewski, T., Norton, L., Tran, T., McGuire, P., Swensen, J., Hampel, H., Borgen, P., Brown, K., Skolnick, M., et al. (1996). Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer. Nat. Genet. 13, 126-128 https://doi.org/10.1038/ng0596-126
  32. Park, P.G., and Lee, H. (2008). Development of thymic lymphomas in mice disrupted of Brca2 allele in the thymus. Exp. Mol. Med. 40, 339-344. https://doi.org/10.3858/emm.2008.40.3.339
  33. Patel, K.J., Yu, V.P., Lee, H., Corcoran, A., Thistlethwaite, F.C., Evans, M.J., Colledge, W.H., Friedman, L.S., Ponder, B.A., and Venkitaraman, A.R. (1998). Involvement of Brca2 in DNA repair. Mol. Cell 1, 347-357 https://doi.org/10.1016/S1097-2765(00)80035-0
  34. Pellegrini, L., Yu, D.S., Lo, T., Anand, S., Lee, M., Blundell, T.L., and Venkitaraman, A.R. (2002). Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420, 287-293. https://doi.org/10.1038/nature01230
  35. Rajan, J.V., Marquis, S.T., Gardner, H.P., and Chodosh, L.A. (1997) Developmental expression of Brca2 colocalizes with Brca1 and is associated with proliferation and differentiation in multiple tissues. Dev. Biol. 184, 385-401. https://doi.org/10.1006/dbio.1997.8526
  36. Ramus, S.J., Bobrow, L.G., Pharoah, P.D., Finnigan, D.S., Fishman, A., Altaras, M., Harrington, P.A., Gayther, S.A., Ponder, B.A., and Friedman, L.S. (1999). Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes Chromosomes Cancer 25, 91-96. https://doi.org/10.1002/(SICI)1098-2264(199906)25:2<91::AID-GCC3>3.0.CO;2-5
  37. Risch, H.A., McLaughlin, J.R., Cole, D.E., Rosen, B., Bradley, L., Fan, I., Tang, J., Li, S., Zhang, S., Shaw, P.A., et al. (2006) Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl. Cancer Inst. 98, 1694-1706. https://doi.org/10.1093/jnci/djj465
  38. Sharan, S.K., Morimatsu, M., Albrecht, U., Lim, D.S., Regel, E., Dinh, C., Sands, A., Eichele, G., Hasty, P., and Bradley, A. (1997). Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804-810. https://doi.org/10.1038/386804a0
  39. Shieh, S.Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334. https://doi.org/10.1016/S0092-8674(00)80416-X
  40. Sluss, H.K., Armata, H., Gallant, J., and Jones, S.N. (2004). Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol. Cell. Biol. 24, 976-984. https://doi.org/10.1128/MCB.24.3.976-984.2004
  41. Spain, B.H., Larson, C.J., Shihabuddin, L.S., Gage, F.H., and Verma, I.M. (1999). Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc. Natl. Acad. Sci. USA 96, 13920-13925. https://doi.org/10.1073/pnas.96.24.13920
  42. Suzuki, A., de la Pompa, J.L., Hakem, R., Elia, A., Yoshida, R., Mo, R., Nishina, H., Chuang, T., Wakeham, A., Itie, A., et al. (1997). Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev. 11, 1242-1252. https://doi.org/10.1101/gad.11.10.1242
  43. Tavtigian, S.V., Simard, J., Rommens, J., Couch, F., Shattuck-Eidens, D., Neuhausen, S., Merajver, S., Thorlacius, S., Offit, K., Stoppa-Lyonnet, D., et al. (1996). The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat. Genet. 12, 333-337 https://doi.org/10.1038/ng0396-333
  44. Thorslund, T., and West, S.C. (2007). BRCA2: a universal recombinase regulator. Oncogene 26, 7720-7730. https://doi.org/10.1038/sj.onc.1210870
  45. Wong, A.K., Pero, R., Ormonde, P.A., Tavtigian, S.V., and Bartel, P.L. (1997). RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272, 31941-31944. https://doi.org/10.1074/jbc.272.51.31941
  46. Yan, D.H., Wen, Y., Su, L.K., Xia, W., Wang, S.C., Zhang, S., Gan, L., Lee, D.F., Spohn, B., Frey, J.A., et al. (2004). A delayed chemically induced tumorigenesis in Brca2 mutant mice. Oncogene 23, 1896-1901. https://doi.org/10.1038/sj.onc.1207314
  47. Yu, J., Wang, Z., Kinzler, K.W., Vogelstein, B., and Zhang, L. (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 100, 1931-1936. https://doi.org/10.1073/pnas.2627984100

Cited by

  1. Emerging roles of p53 and other tumour-suppressor genes in immune regulation vol.16, pp.12, 2016, https://doi.org/10.1038/nri.2016.99
  2. Precancer Atlas to Drive Precision Prevention Trials vol.77, pp.7, 2015, https://doi.org/10.1158/0008-5472.can-16-2346
  3. DNA repair gene expressions are related to bone marrow cellularity in myelodysplastic syndrome vol.70, pp.11, 2015, https://doi.org/10.1136/jclinpath-2016-204269
  4. Foxp3 expression in induced regulatory T cells is stabilized by C/EBP in inflammatory environments vol.19, pp.12, 2018, https://doi.org/10.15252/embr.201845995
  5. Recent Findings in the Regulation of Programmed Death Ligand 1 Expression vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.01337
  6. A STING to inflammation and autoimmunity vol.106, pp.1, 2019, https://doi.org/10.1002/jlb.4mir1018-397rr