DOI QR코드

DOI QR Code

Monte Carlo Investigation of Spatially Adaptable Magnetic Behavior in Stretchable Uniaxial Ferromagnetic Monolayer Film

  • Laosiritaworn, Yongyut (Department of Physics and Materials Science, Faculty of Science, Chiang Mai University) ;
  • Laosiritaworn, Wimalin (Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University)
  • 투고 : 2014.07.05
  • 심사 : 2015.02.06
  • 발행 : 2015.03.31

초록

In this work, Monte Carlo simulation was employed to model the stretchable Ising monolayer film to investigate the effect of the spatial distance variation among magnetic atoms on magnetic behavior of the film. The exchange interaction was considered as functions of initial interatomic distance and the stretched distance (or the strain). Following Bethe-Slater picture, the magnetic exchange interaction took the Lennard-Jones potential-like function. Monte Carlo simulations via the Wolff and Metropolis algorithms were used to update the spin systems, where equilibrium and dynamic magnetic profiles were collected. From the results, the strain was found to have strong influences on magnetic behavior, especially the critical behavior. Specifically, the phase transition point was found to either increase or decrease depending on how the exchange interaction shifts (i.e. towards or away from the maximum value). In addition, empirical functions which predict how the critical temperatures scale with initial interatomic distance and the strain were proposed, which provides qualitatively view how to fine tune the magnetic critical point in monolayer film using the substrate modification induced strain.

키워드

참고문헌

  1. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E Fullerton, J. Phys. D: Appl. Phys. 35, R157 (2002). https://doi.org/10.1088/0022-3727/35/19/201
  2. N. A. Spaldin, Magnetic Materials, Fundamentals and Device Applications, Cambridge University Press, Cambridge (2003).
  3. D. Sander, A. Enders, and J. Kirschner, J. Magn. Magn. Mater. 200, 439 (1999). https://doi.org/10.1016/S0304-8853(99)00310-8
  4. W. Wulfhekel, F. Zavaliche, F. Porrati, H. P. Oepen, and J. Kirschner, Europhys. Lett. 49, 651 (2000). https://doi.org/10.1209/epl/i2000-00200-6
  5. Y. Ohtani and I. Hatakeyama, J. Magn. Magn. Mater. 131, 339 (1994). https://doi.org/10.1016/0304-8853(94)90278-X
  6. T. Takikawa, T. Sakakibara, K. Matsuhira, K. Tenya, H. Amitsuka, and S. Kunii, Physica B 281, 561 (2000).
  7. A. Vl. Andrianov, E. Bauer, Ch. Paul, and O. A. Savel'eva, J. Magn. Magn. Mater. 272, E451 (2004).
  8. Y. V. Sushko, B. DeHarak, G. Cao, G. Shaw, D. K. Powell, and J. W. Brill, Solid State Commun. 130, 341 (2004). https://doi.org/10.1016/j.ssc.2004.02.010
  9. J. Prokop, D. A. Valdaitsev, A. Kukunin, M. Pratzer, G. Schonhense, and H. J. Elmers, Phys. Rev. B 70, 184423 (2004). https://doi.org/10.1103/PhysRevB.70.184423
  10. R. Cheng, S. D. Bader, and F. Y. Fradin, Phys. Rev. B 77, 024404 (2008). https://doi.org/10.1103/PhysRevB.77.024404
  11. C.-G. Duan, R. F. Sabiryanov, Jianjun Liu, W. N. Mei, P. A. Dowben, and J. R. Hardy, Phys. Rev. Lett. 94, 237201 (2005). https://doi.org/10.1103/PhysRevLett.94.237201
  12. T. Murata, H. Kushida, T. Terai, and T. Kakeshita, J. Magn. Magn. Mater. 310, 1555 (2007). https://doi.org/10.1016/j.jmmm.2006.10.561
  13. B. Grossmann and D. G. Rancourt, Phys. Rev. B 54, 12294 (1996) and references therein. https://doi.org/10.1103/PhysRevB.54.12294
  14. T. Burghardt, E. Hallmann, and A. Eichler, Physica B 230, 214 (1997).
  15. C. W. Looney, K. Falk, James J. Hamlin, Takahiro Tomita, James S. Schilling, W. Haase, and Z. Tomkowicz, Polyhedron 22, 3339 (2003). https://doi.org/10.1016/j.poly.2003.07.003
  16. M. Nicklas, N. O. Moreno, H. A. Borges, E. D. Bauer, J. L. Sarrao, and J. D. Thompson, J. Magn. Magn. Mater. 272, E111 (2004).
  17. S. Arumugam, K. Mydeen, Magda Fontes, N. Manivannan, M. Kumaresa Vanji, K. U. RamaTulasi, S. M. Ramos, Elisa Baggio Saitovitch, D. Prabhakaran, and A. T. Boothroyd, Solid State Commun. 136, 292 (2005). https://doi.org/10.1016/j.ssc.2005.07.026
  18. V. A. Sidorov, A. V. Rakhmanina, and O. A. Morya, Solid State Commun. 139, 360 (2006). https://doi.org/10.1016/j.ssc.2006.06.025
  19. M. Mihalik, V. Kavecansky, A. S. Panfilov, K. Wochowski, and R. Troc, J. Alloys Compd. 421, 8 (2006). https://doi.org/10.1016/j.jallcom.2005.11.005
  20. T. Hamasaki, H. Kuroe, T. Sekine, T. Naka, M. Hase, N. Maeshima, Y. Saiga, and Y. Uwatoko, J. Magn. Magn. Mater. 310, E394 (2007). https://doi.org/10.1016/j.jmmm.2006.10.370
  21. C. S. Schneider, J. Appl. Phys. 97, 10E503 (2005). https://doi.org/10.1063/1.1846451
  22. N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). https://doi.org/10.1103/PhysRevLett.17.1133
  23. P. C. Hohenberg, Phys. Rev. 158, 383 (1967). https://doi.org/10.1103/PhysRev.158.383
  24. D. Jansow and M. E. Fisher, Phys. Rev. Lett. 23, 286 (1969). https://doi.org/10.1103/PhysRevLett.23.286
  25. P. A. Serena, N. Garcia and A. Levanyuk, Phys. Rev. B 47, 5027 (1993). https://doi.org/10.1103/PhysRevB.47.5027
  26. K. Binder and P. C. Hohenberg, Phys. Rev. B 9, 2194 (1974). https://doi.org/10.1103/PhysRevB.9.2194
  27. M. Bander and D. L. Mills, Phys. Rev. B 38, 12015 (1988). https://doi.org/10.1103/PhysRevB.38.12015
  28. Y. Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992). https://doi.org/10.1103/PhysRevLett.68.1208
  29. H. J. Elmers, J. Hauschild, H. Hoche, U. Gradmann, H. Bethge, D. Heuer, and U. Kohler, Phys. Rev. Lett. 73, 898 (1994). https://doi.org/10.1103/PhysRevLett.73.898
  30. M. J. Dunlavy and D. Venus, Phys. Rev. B 69, 094411 (2004). https://doi.org/10.1103/PhysRevB.69.094411
  31. P. Massimino and H. T. Diep, J. Appl. Phys. 87, 7043 (2000). https://doi.org/10.1063/1.372925
  32. V. T. Ngo and H. T. Diep, J. Appl. Phys. 91, 8399 (2002). https://doi.org/10.1063/1.1456443
  33. S. J. Mitchell and D. P. Landau, Phys. Rev. Lett. 97, 025701 (2006). https://doi.org/10.1103/PhysRevLett.97.025701
  34. R. C. Wayne and L. C. Bartel, Phys. Lett. A 28, 196 (1968). https://doi.org/10.1016/0375-9601(68)90197-7
  35. M. M. Abd-Elmeguid and H. Micklitz, Physica B 161, 17 (1989).
  36. J. M. D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, Cambridge (2009).
  37. C. Heck, Magnetic Materials and Their Applications, Butterworth Co. (Publishers) Ltd., London (1974).
  38. U. Wolff, Phys. Rev. Lett. 62, 361 (1989). https://doi.org/10.1103/PhysRevLett.62.361
  39. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, Springer-Verlag, Berlin (1992).
  40. K. Binder, Z. Phys. B: Condens. Matter. 43, 119 (1981). https://doi.org/10.1007/BF01293604
  41. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford (1999).
  42. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953). https://doi.org/10.1063/1.1699114
  43. Y. Laosiritaworn, Ph.D. Thesis, The University of Warwick, UK (2002).
  44. B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model, Harvard University Press, Cambridge MA (1973).
  45. A. Punya, R. Yimnirun, P. Laoratanakul, and Y. Laosiritaworn, Physica B 405, 3482 (2010). https://doi.org/10.1016/j.physb.2010.05.028
  46. Y. Laosiritaworn, Thin Solid Films 517, 5189 (2009). https://doi.org/10.1016/j.tsf.2009.03.103
  47. Y. Laosiritaworn, Adv. Mat. Res. 55, 385 (2008).