DOI QR코드

DOI QR Code

A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H2O2 by Using Polyelectrolyte Multilayers

고분자 전해질 다층박막을 이용한 과산화수소 직접제조 반응 중 활성금속 용출 억제 방법

  • Chung, Young-Min (Department of Nano & Chemical Engineering, Kunsan National University)
  • 정영민 (군산대학교 나노화학공학과)
  • Received : 2015.01.08
  • Accepted : 2015.02.12
  • Published : 2015.04.01

Abstract

In this study, two types of catalysts were prepared via conventional metal supporting method and encapsulation of metal nanoparticles in the polyelectrolyte multilayers constructed on support. The resulting catalysts were applied to the direct synthesis of hydrogen peroxide, and the effect of catalyst preparation method on the catalyst life as well as hydrogen peroxide productivity was investigated. The catalytic activity was strongly dependent upon the acid strength of support regardless of the catalyst preparation methods and HBEA (SAR=25) with strong acidity was superior to other supports to promote the reaction. In the case of metal supported catalyst, while hydrogen peroxide productivity was higher than that of polyelectrolyte multilayered counterpart, the reaction performance was sharply decreased during catalyst recycling due to the metal leaching. On the other hand, construction of polyelectrolyte multilayers on support weakened the influence of acid support on the reaction medium and therefore resulted in the decrease of catalytic activity and the increase of hydrogen peroxide decomposition as well. It is noted, however, that the catalytic activity was maintained after 5 recycles, which suggests that the introduction of polyelectrolyte multilayers on the support is very effective to suppress the unfavorable metal leaching phenomenon during a reaction.

본 연구에서는 일반적인 귀금속 담지법과 담체 위에 형성한 고분자 전해질 다층 박막 내에 귀금속을 내포시키는 방법으로 촉매를 제조하고, 과산화수소 직접제조 반응에 적용하여 촉매의 제조 방법이 과산화수소 생산성 및 촉매 수명에 미치는 영향을 조사하였다. 촉매의 활성은 제조 방법에 상관없이 담체의 산세기에 크게 의존하였으며, 사용한 담체들 중 산세기가 가장 강한 HBEA(SAR=25)를 사용한 경우가 활성이 가장 우수하였다. 단순 귀금속 담지 촉매는 고분자 전해질 다층 박막을 도입한 촉매보다 과산화수소 생산성은 우수하였으나, 반응 중 활성 금속인 Pd의 용출로 인해 재사용 횟수가 증가할 때마다 활성이 급격히 감소하였다. 한편, 고분자 전해질 다층 박막의 도입은 산성 담체의 역할을 약화시켜 촉매 활성은 감소하고 과산화수소 분해능은 증가하여 전체적으로 과산화수소의 생산성이 감소되는 결과를 가져왔다. 하지만, 5회에 걸친 재사용 동안에도 촉매 활성이 유지되었으며, 이러한 비약적인 촉매 수명의 향상은 담체 위에 고분자 전해질 다층 박막을 도입하는 것이 반응 중 활성 금속의 용출 억제 측면에서 매우 효과적이라는 것을 시사한다.

Keywords

References

  1. Campos-Martin, J. M., Blanco-Brieva, G. and Fierro, J. L. G., "Hydrogen Peroxide Synthesis: An Outlook Beyond the Anthraquinone Process," Angew. Chem. Int. Ed., 45, 6962-6984(2006). https://doi.org/10.1002/anie.200503779
  2. Samanta, C., "Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen: An Overview of Recent Developments in the Process," Appl. Catal. A: Gen., 350, 133-149(2008). https://doi.org/10.1016/j.apcata.2008.07.043
  3. Dittmeyera, R., Grunwaldt, J.-D. and Pashkova, A., "A Review of Catalyst Performance and Novel Reaction Engineering Concepts in Direct Synthesis of Hydrogen Peroxide," Catal. Today (2014) http://dx.doi.org/10.1016/j.cattod.2014.03.055.
  4. Voloshin, Y. and Lawal, A., "Kinetics of Hydrogen Peroxide Reduction by Hydrogen in a Microreactor," Appl. Cat. A: Gen., 353, 9-16 (2006).
  5. Edwards, J. K., Solsona, B., Ntainjua, E. N., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J., "Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process," Science, 323, 1037-1041(2009). https://doi.org/10.1126/science.1168980
  6. Park, S., Lee, J., Song, J. H., Kim, T. J., Chung, Y.-M., Oh, S.-H. and Song, I. K., "Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Pd/HZSM-5 Catalysts: Effect of Brönsted Acidity," J. Mol. Catal. A: Chem., 363-364, 230-236(2012). https://doi.org/10.1016/j.molcata.2012.06.014
  7. Park, S., Lee, S. H., Song, S. H., Park, D. R., Baeck, S. H., Kim, T. J., Chung, Y.-M., Oh, S. H. and Song, I. K., "Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Palladiumexchanged Insoluble Heteropolyacid Catalysts," Catal. Commun., 10, 391-394(2009). https://doi.org/10.1016/j.catcom.2008.10.002
  8. Park, S., Baeck, S.-H., Kim, T. J., Chung, Y.-M., Oh, S.-H. and Song, I. K., "Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Palladium Catalyst Supported on $SO_3H$-functionalized Mesoporous Silica," J. Mol. Catal. A: Chem., 319, 98-107(2010). https://doi.org/10.1016/j.molcata.2009.12.006
  9. Park, S., Kim, T. J., Chung, Y.-M., Oh, S.-H. and Song, I. K., "Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Palladium Catalyst supported on $SO_3H$-functionalized MCF Silica: Effect of Calcination Temperature of Mesostructured Cellular Foam Silica," Korean J. Chem. Eng., 28(6), 1359-1363(2011). https://doi.org/10.1007/s11814-010-0519-6
  10. Chung, Y.-M., Kwon, Y.-T., Kim, T. J., Oh, S.-H. and Lee, C.-S., "Direct Synthesis of $H_2O_2$ Catalyzed by Pd Nanoparticles Encapsulated in the Multi-layered Polyelectrolyte Nanoreactors on a Charged Sphere," Chem. Commun., 47, 5705-5707(2011). https://doi.org/10.1039/c1cc11180a
  11. Kim, J., Chung, Y.-M., Kang, S. M., Choi, C. H., Kim, B. Y., Kwon, Y.-T., Kim, T. J., Oh, S.-H. and Lee, C.-S., "Palladium Nanocatalysts Immobilized on Functionalized Resin for the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen," ACS Catal., 2, 1042-1048(2012). https://doi.org/10.1021/cs300090h
  12. Decher, G., "Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites," Science, 277, 1232-1237(1997). https://doi.org/10.1126/science.277.5330.1232
  13. Messina, R., Holm, C. and Kremer, K., "Polyelectrolyte Multilayering on a Charged Sphere," Langmuir, 19, 4473-4482(2003). https://doi.org/10.1021/la026988n
  14. Shia, X., Shen, M. and Möhwald, H., "Polyelectrolyte Multilayer Nanoreactors Toward the Synthesis of Diverse Nanostructured Materials," Prog. Polym. Sci., 29, 987-1019(2004). https://doi.org/10.1016/j.progpolymsci.2004.07.001
  15. Schrinner, M., Proch, S., Mei, Y., Kempe, R., Miyajima, N. and Ballauff, M., "Stable Bimetallic Gold-Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes: Synthesis, Characterization, and Application for the Oxidation of Alcohols," Adv. Mater., 20, 1928-1933(2008). https://doi.org/10.1002/adma.200702421
  16. Song, H.-M., Park, Y.-M., Son, Y.-A. and Lee, C.-S., "Fabrication of Chemical Sensors for the Detection of Acidic Gas using 1,3-bisdicyanovinylindane," Korean Chem. Eng. Res., 46(1), 184-188 (2008).
  17. Chia, K., Cohen, R. E. and Rubner, M. F., "Amine-Rich Polyelectrolyte Multilayer Nanoreactors for in Situ Gold Nanoparticle Synthesis," Chem. Mater., 20(21), 6756-6763(2008). https://doi.org/10.1021/cm802166s
  18. Kidambi, S., Dai, J., Li, J. and Bruening, M. L., "Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers," J. Am. Chem. Soc., 126, 2658-2659(2004). https://doi.org/10.1021/ja038804c
  19. Schuetz, P. and Caruso, F., "Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers," Chem. Mater., 16(16), 3066-3073(2004). https://doi.org/10.1021/cm049957h