DOI QR코드

DOI QR Code

Effect of SiC Crystal Phase on Growing ZSM-5 on the Surface of SiC

탄화규소 결정상의 종류가 탄화규소 표면에 ZSM-5가 형성되는데 미치는 영향

  • Jung, Eunjin (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Yoon Joo (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Younghee (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo Teck (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong-Geun (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2014.07.18
  • Accepted : 2014.09.17
  • Published : 2015.04.01

Abstract

ZSM-5 crystals grew on the surface of ${\alpha}$-SiC and ${\beta}$-SiC particles by hydrothermal synthesis method. SiC particles which were > $50{\mu}m$ of size were used, and oxide layer were developed on the surface of the particles to induce growth of ZSM-5 from the surface. Then, synthesis time and temperature condition were considered growing ZSM-5. In this study, oxide layer was formed on ${\beta}$-SiC at $900^{\circ}C$ in air, and it was controlled to grow ZSM-5 grew from the ${\beta}$-SiC surface with $150^{\circ}C$ synthesis condition. This is due to Si-O-Si or Si-O-Al bond, which is basic framework of ZSM-5 can be easily formed, from the silicon oxide film on the surface of ${\beta}$-SiC. When the synthesis temperature was $200^{\circ}C$, the size of ZSM-5 was increased, and it covered much area of the SiC surface with better crystal shapes with longer synthesis time.

${\alpha}$-상 과 ${\beta}$-상 두 가지 종류의 탄화규소(SiC) 입자 표면에 수열 합성 방법으로 ZSM-5 결정을 형성하였다. SiC는 $50{\mu}m$ 이상이 되는 크기의 입자를 사용하였으며, ZSM-5 결정이 SiC 표면에서부터 성장하도록 유도하기 위하여 합성 단계에 앞서 SiC 표면에 산화층을 형성하였으며, 수열합성 온도와 시간을 변화시켜 보았다. 그 결과 ${\beta}$-SiC는 $900^{\circ}C$ 조건에서도 산화막이 형성되었으며, 특히 $150^{\circ}C$ 합성 조건에서 ZSM-5가 ${\beta}$-SiC 표면에서부터 성장하였음이 뚜렷이 관찰되었다. $200^{\circ}C$ 조건에서는 ZSM-5의 결정의 크기가 성장할 뿐 아니라, 시간의 증가에 따라 결정의 형태가 뚜렷해지고 SiC 표면에 도포되는 양이 증가하는 것을 확인할 수 있었다.

Keywords

References

  1. Baerlocher, C., Meier, W. M. and Olson, D. H., "Atlas of Zeolite Structure Types," Vol 190. London, Elsevier (1996).
  2. Van Donk, S., Janssen, A. H., Bitter, J. H. and de Jong, K. P., "Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts," Catal. Rev., 45, 297-319(2003). https://doi.org/10.1081/CR-120023908
  3. Darthomeuf, D., "Zeolite Acidity Dependence on Structure and Chemical Environment. Correlations with Catalysis," Mater. Chem. Phys., 17, 49-71(1987). https://doi.org/10.1016/0254-0584(87)90048-4
  4. Meusinger, J. and Corma, A., "Influence of Zeolite Composition and Structure on Hydrogen Transfer Reactions from Hydrocarbons and from Hydrogen," J. Catal. 159, 353-360(1996). https://doi.org/10.1006/jcat.1996.0097
  5. Weitkamp, J., "Zeolites and Catalysis," Solid State Ion., 131, 175-188(2000). https://doi.org/10.1016/S0167-2738(00)00632-9
  6. Argenauer, R. J. and Landolt, G. R., "Crystalline Zeolite ZSM-5 and Method of Preparing the Same," US Patent 3,702,886(1972).
  7. Olson, D. H., Haag, W. O. and Lago, R. M., "Chemical and Physical Properties of the ZSM-5 Substitutional Series," J. Catal., 61, 390-396(1980). https://doi.org/10.1016/0021-9517(80)90386-3
  8. Yang, G., He, J., Yoneyama, Y., Tan, Y., Han, Y. and Tsubaki, N., "Preparation, Characterization and Reaction Performance of HZSM-5/Cobalt/Silica Capsule Catalysts with Different Sizes for Direct Synthesis of Isoparaffins," Appl. Catal. A, 329, 99-105 (2007). https://doi.org/10.1016/j.apcata.2007.06.028
  9. Lee, Y.-J., Kim, Y.-W., Viswanadham, N., Jun, K.-W. and Bae, J. W., "Novel Aluminophosphate (AlPO) Bound ZSM-5 Extrudates with Improved Catalytic Properties for Methanol to Propylene (MTP) Reaction," Appl. Catal. A, 374, 18-25(2010). https://doi.org/10.1016/j.apcata.2009.11.019
  10. Suzuki, H., "Composite Membrane Having a Surface Layer of an Ultrathin Film of Cage-shaped Zeolite and Processes for Production Thereof," US Patent 4,699,892(1987).
  11. Rauscher, M., Selvam, T., Schwieger, W. and Freude, D., "Hydrothermal Transformation of Porous Glass Granules into ZSM-5 Granules," Micropor. Mesopor. Mat., 75, 195-202(2004). https://doi.org/10.1016/j.micromeso.2004.06.029
  12. Louis, B., Ocampo, F., Yun, H. S., Tessonnier, J. P. and Pereira, M. M., "Hierarchical Pore ZSM-5 Zeolite Structures: From Microto Macro-Engineering of Structured Catalysts," Chem. Eng. J., 161, 397-402(2010). https://doi.org/10.1016/j.cej.2009.09.041
  13. Eslava, S., Iacopi, F., Baklanov, M. R., Kirschhock, C. E, Maex, K. and Martens, J. A., "Ultraviolet-Assisted Curing of Polycrystalline Pure-Silica Zeolites:Hydrophobization, Functionalization, and Cross-Linking of Grains," J. Am. Chem. Soc., 129, 9288-9289(2007). https://doi.org/10.1021/ja0723737
  14. Seijger, G. B. F., Oudshoorn, O. L., Van Kooten, W. E. J., Jansen, J. C., Van Bekkum, H., Van Den Bleek, C. M. and Calis, H. P. A., "In Situ Synthesis of Binderless ZSM-5 Zeolitic Coatings on Ceramic Foam Supports," Micropor. Mesopor. Mat., 39, 195-204(2000). https://doi.org/10.1016/S1387-1811(00)00196-7
  15. Ledoux, M. J. and Pham-Huu, C. "Silicon Carbide: a Novel Catalyst Support for Heterogeneous Catalysis," Cattech, 5, 226-246 (2001). https://doi.org/10.1023/A:1014092930183
  16. Moene, R., Makkee, M. and Moulijn, J. A., "High Surface Area Silicon Carbide as Catalyst Support Characterization and Stability," Appl. Catal. A: Gen., 167, 321-330(1998). https://doi.org/10.1016/S0926-860X(97)00326-8
  17. Krawiec, P. and Kaskel, S. "Thermal Stability of High Surface Area Silicon Carbide Materials," J. Solid State Chem., 179, 2281-2289 (2006). https://doi.org/10.1016/j.jssc.2006.02.034
  18. Ivanova, S., Vanhaecke, E., Louis, B., Libs, S., Ledoux, M. J., Rigolet, S. and Pham-Huu, C., "Efficient Synthesis of Dimethyl Ether over HZSM-5 Supported on Medium-Surface-Area $\beta$-SiC Foam," ChemSusChem, 1, 851-857(2008). https://doi.org/10.1002/cssc.200800024
  19. Losch, P., Boltz, M., Soukup, K., Song, I. H., Yun, H. S. and Louis, B., "Binderless Zeolite Coatings on Macroporous Α-sic Foams," Micropor. Mesopor. Mat., 188, 99-107(2014). https://doi.org/10.1016/j.micromeso.2014.01.008
  20. Jung, E. J., Lee, Y. J., Kim, S. R., Kwon, W. T., Choi, D. J. and Kim, Y., "Purification and Particle Size Control of $\beta$-SiC Powder Using Thermocycling Process," Adv. Appl. Ceram., 113, 352-357 (2014). https://doi.org/10.1179/1743676114Y.0000000171
  21. Basso, S., Tessonnier, J.-P., Cuong, P.-H., Ledoux, M. J. and Wine, Gauthier, "Zeolite/SiC Composites and Their Use in Catalysis," US Patent 7,179,764.
  22. Merle-Mejean, T., Abdelmounm̂ , E. and Quintard, P. "Oxide Layer on Silicon Carbide Powder: a FT-IR Investigation," J. Mol. Struc., 349, 105-108(1995). https://doi.org/10.1016/0022-2860(95)08720-G
  23. Kwon, W. T., Kim, S. R., Kim, Y., Lee, Y. J., Won, J., Park, W. K. and Oh, S. C., "Effect of Temperature and Carbon Contents on the Synthesis of $\beta$-SiC from Silicon Sludge by Direct Carbonization Method," Mater. Sci. Forum., 724, 45-48(2012). https://doi.org/10.4028/www.scientific.net/MSF.724.45
  24. Shirazi, L., Jamshidi, E. and Ghasemi, M. R., "The Effect of Si/Al Ratio of ZSM-5 Zeolite on Its Morphology, Acidity and Crystal Size," Cryst. Res. Technol., 43, 1300-1306(2008). https://doi.org/10.1002/crat.200800149
  25. Nawaz, Z., Xiaoping, T. and Wei, F., "Influence of Operating Conditions, Si/Al Ratio and Doping of Zinc on Pt-Sn/ZSM-5 Catalyst for Propane Dehydrogenation to Propene," Korean J. Chem. Eng., 26, 1528-1532(2009). https://doi.org/10.1007/s11814-009-0233-4
  26. Kim, H. G., Yang, Y. C., Jeong, K. E., Kim, T. W., Jeong, S. Y., Kim, C. U., Jhung, S. H. and Lee, K. Y., "Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst," Korean Chem. Eng. Res., 51, 418-425(2013). https://doi.org/10.9713/kcer.2013.51.4.418