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Abstract
General purpose computing applications have not yet been thoroughly explored in procedure level speculation, espe-

cially in the light-weighted profiling way. This paper proposes a light-weighted profiling mechanism to analyze specula-

tive parallelism characterization in several classic general purpose computing applications from SPEC CPU2000

benchmark. By comparing the key performance factors in loop and procedure-level speculation, it includes new findings

on the behaviors of loop and procedure-level parallelism under these applications. The experimental results are as fol-

lows. The best gzip application can only achieve a 2.4X speedup in loop level speculation, while the best mcf application

can achieve almost 3.5X speedup in procedure level. It proves that our light-weighted profiling method is also effective.

It is found that between the loop-level and procedure-level TLS, the latter is better on several cases, which is against the

conventional perception. It is especially shown in the applications where their ‘hot’ procedure body is concluded as ‘hot’

loops.
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I. INTRODUCTION

General purpose computing is taking an irreversible step

toward multicore chip era. The primary problem is that

creating legacy parallelized code is difficult, since many

current general purpose programs have been written in

serial algorithms. Even with a good tool chain including

profilers and parallel compilers, automated parallelization

has been proven to be a very difficult problem. Although

parallel compilers have made significant efforts, they still

fail to automatically parallelize general purpose single-

threaded programs which have complex data dependence
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structures caused by non-linear subscripts, pointers, or

function calls within code sections [1, 2].

To alleviate this problem, one promising way is the use

of thread level speculation (TLS) [3-5]. Unlike parallel-

ization for traditional multiprocessors, which requires

conservative synchronization for preserving the program

semantics, TLS can potentially achieve higher levels of

parallelism by exploiting the dynamic parallelism. TLS

hardware provides support for speculative threads, which

can be executed in parallel; but, it dynamically rolls back

and is re-executed if dependences exist between threads.

It allows the compiler to automatically parallelize por-

tions of code in the presence of statically ambiguous data

dependences, thus extracting parallelism between what-

ever dynamic dependences actually exist at run-time.

Speculative threads are thus not limited by the program-

mer’s or the compiler’s ability to find the guaranteed par-

allel threads. Furthermore, speculative threads have the

potential to outperform even the perfect static paralleliza-

tion by exploiting dynamic parallelism, unlike a multi-

processor which requires conservative synchronization to

preserve correct program semantics [6-8].

General purpose computing applications have been

accelerated in many researches, but they have not yet

been thoroughly explored in the procedure level specula-

tion, especially in the light-weighted profiling way [6, 9-

11]. It is therefore important to quantitatively character-

ize the program behavior in procedure level speculation

of these applications, in order to provide insights for

future design and research of multicore systems. 

In this paper, we propose a speculation model in order

to analytically present the parallelism limit of general pur-

pose computing applications, including speculative exe-

cution model for procedure & loop, evaluation metrics,

and light-weighted profiling mechanism. It takes several

of the typical general purpose computing applications

from SPEC CPU2000 benchmark to compare their poten-

tial speculative speedup, thread size, coverage parallel-

ism, inter-thread data dependence feature in loop, and

procedure level speculation. The rest of this paper is orga-

nized as follows. Related work is discussed in Section II.

The procedure & loop level speculation model and profil-

ing mechanism are described in Sections III and IV,

respectively, followed by experiment analysis in Section

V. Finally, we conclude in Section VI.

II. RELATED WORK

Difficulty in accelerating general purpose computing

applications on multicore platform requires exploiting

and making use of more parallelism. There are two tradi-

tional ways of obtaining more parallelism. One way is the

use of shared memory parallel programming model and

language, such as OpenMP. It uses explicit user guidance

to exploit thread-level parallelism, and the locking and

synchronization variables to achieve the synchronization

between the threads. This method is very limited as fol-

lows. 1) User guidance can only exploit limited coarse

granularity thread-level parallelism, and the fine granu-

larity parallelism cannot be exploited because the com-

plex data dependence makes it difficult for users to

recognize the finer parallelism. 2) Coarse-grained locks

could synchronize a large amount of data, and they would

lead the unrelated code to only run in the serial sequence

so that it makes less use of parallelism. Fine-grained

locks bring additional system overhead and make parallel

programming and debugging become extremely difficult.

Another way is to automatically parallelize the serial pro-

gram by using a parallel compiler. This approach requires

the compiler to carefully deal with a lot of data dependen-

cies between the threads. However, in order to maintain

the serial semantics in program itself, the compiler has to

use relatively conservative parallelism and synchroniza-

tion strategy, thus greatly affecting the implementation of

the thread execution concurrency. Practice has shown

that apart from a few scientific computing programs,

automatic parallelization for serial program is unfit to

exploit parallelism from a large number of general pur-

pose computing applications.

Recent TLS researches have focused on various accel-

erating technologies in speculation, and most of them [1,

6, 7, 10, 12, 13] pointed out that speculating loop struc-

ture is a better choice in TLS. Sohi et al. [14] of the Wis-

consin University first used the thread-level speculative

technology to accelerate the serial programs in the Multi-

Scalar project. Prabhu and Olukotun [6] evaluated the

performance potential of a multiprocessor-based approach

through a radical manual optimization way, but a purely

manual way could not reduce the programmers’ work-

load. Oplinger et al. [15] proposed to treat procedure struc-

ture as thread candidates supplement in the TLS. Hydra

[13] moved speculative data into each core’s private

space and leveraged the cache coherence protocol for dis-

ambiguation. Research by the CMU STAMPede team

[12] proposed to implement scalable conflict detection

and version management for TLS, but their cache coher-

ence protocols were shown to be very complicated. Du et

al. [16] focused on the software value prediction technol-

ogy to improve the speculative parallel performance in

desktop benchmarks. Johnson et al. [1] showed that spec-

ulative thread partition is performed by a profile embed-

ded into the program. Our preliminary work has also

focused on the online profiling technology in loop level

speculation [17]. 

Meanwhile, general purpose computing applications

have been accelerated in many new researches, such as

by software runtime system [11], GPU [10], or FPGA [9],

etc. However, they have not yet been explored light-

weightedly in procedure level speculation.
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III. SPECULATION MODEL

A. Speculative Execution Model for Procedure

A procedure’s boundaries often separate the fairly

independent computations, and the local variables would

not violate the outer program. Multiple calls would be

executed in parallel by ignoring thread boundaries, until

the call returns. 

The procedure level execution model is shown in Fig. 1.

To speculate at the procedure level in our model, we con-

currently executed the called procedure with the code fol-

lowing the return of the procedure. Notice that it is the

latter that executes speculatively. We propose to use a

new thread to execute the called procedure and have the

original thread execute the rest of the caller code, specu-

latively. A data dependence violation occurs if the code

following the return reads a location before the callee

thread writes to that location. The same mechanism that

is used for loop-level parallelism can be used to ensure

that the data dependencies are satisfied.

B. Speculative Execution Model for Loop

Loop iterations always carry out similar operations to

the same data set, and are independent from each other.

The data dependence between iterations is regular. They

provide a runtime sequence of predictable and naturally

load-balanced threads, leaving dependence as the pri-

mary overhead to potentially interfere with speculation.

The loop level execution model is shown in Fig. 2, for

comparison. Fig. 2(a) shows the traditional execution

model and Fig. 2(b) shows the parallel execution model.

At the beginning of the parallel execution, the main pro-

cessor informs all of the other processors (we call it spec-

ulative processor) to load and execute different iterations

of the loop, by sending a ‘Loop_Start’ signal to them. In

the process of parallel execution, only the head processor

can directly write to memory, and all of the other proces-

sor’s memory references will be cached in its speculative

buffer. The next processor will become the new head pro-

cessor after the current head processor is committed. A

new iteration will be loaded and executed after a proces-

sor has committed its result into memory. When a proces-

sor finds that the exit condition of the loop becomes true,

a ‘Loop_End’ signal would be sent to all of the other pro-

cessors to finish the parallel execution of the specific

loop structure; and only the main processor will continue

running the code following the loop.

Our model is platform-independent to focus more on

the program behavior itself. It incurs no overhead in exe-

cuting the parallel threads, and it can delay the computa-

tion of a thread to perfectly avoid the need to rollback any

of the computation. We can use the optimal model to

derive an upper bound on the performance achievable by

using any possible synchronization optimizations.

IV. PROFILING MECHANISM

A. Evaluation Metrics in Profiling

Coverage parallelism: According to Amdahl’s Law, it

is low parallelism coverage necessarily resulting in poor

performance. So, it is the first evaluation metric in our

profiling. We refer to the percentage of code executed

under parallel execution as the parallelism coverage.

Inter-thread data dependence violation: It is known that

all of the overheads for conflict detection, synchronization,

rollback, and restart are caused by this. So, it is the most

important evaluation metric. The lower Inter-thread data

dependence violations will give the higher performance.

Thread size: Different thread size would cause load

imbalance problem in speculation. Short thread cannot

payoff the overhead of speculative execution. Long thread

may lead to speculative buffer overflow, which must stall

Fig. 1. Speculative execution model for procedures. Fig. 2. Speculative execution model for loops.
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the execution of the thread. Proper and similar thread size

is good for TLS performance. So, it is also an important

evaluation metric.

Inter-thread control dependence feature: The predica-

tion rate for inter-thread control flow shows the control

dependence violations feature among the threads. If the

predication is wrong, the speculative thread has to restart,

which badly affects the performance. Fortunately, inter-

thread control dependence between speculative threads

can be easily resolved by stride-value predication tech-

nology [15]. So, we did not analyze the Inter-thread con-

trol dependence feature in profiling.

B. Memory Access Type in Speculation

Memory dependence violations have a tremendous

impact on the TLS performance. There are three catego-

ries arising from this, as follows: the access in the Global

Data segment (including initialized and uninitialized glo-

bal data access), Heap segment, and Stack segment. Cor-

responding to the variable visits in C language, global

variables and static variables visits represent the access in

the Global Data segment; local function variables visits

take place in the Stack segment, as well as visits in the

procedures context preservation and recovery (mainly

occurred during the function calls). The visit in the mem-

ory space allocated by dynamic allocation function

‘malloc()’ refers to the Heap access, and here, we call
it as dynamic variables visits. 

Through the scope judgment of the memory access

addresses, the memory access type can be determined at

runtime. Only the global and dynamic variables visited in

procedure would violate data dependence with its subse-

quent code, so they’re the profiling objects in procedure

level speculation. For loop level speculation, conserva-

tively, the profiling objects are the global variables,

dynamic variables, and the current variables in Stack seg-

ment.

C. Analysis Method for Data Dependence
Violations

DEFINITION 1. Produce-distance: the instruction num-

bers, from the beginning of the thread to the last, write

operation for a specific memory address.

DEFINITION 2. Consume-distance: the instruction num-

bers from the beginning of the thread to the first read

operation for a specific memory address. 

To speculate either at procedure or loop level, the inter-

thread data dependence can be abstracted as a producer/

consumer model. The memory write operations play the

role of producing data, while the memory read operations

are in charge of consuming data. To describe the data

dependence violation, we introduced the two terms here,

‘produce-distance’ and ‘consume-distance’, as shown in

Fig. 3. The produce-distance means the instruction num-

bers from the beginning of the thread to the last write

instruction, for a specific memory address; and consume-

distance means the instruction numbers from the begin-

ning of the thread to the first read instruction, for a spe-

cific memory address. 

We should point out in the definition that we used the

instruction numbers to represent the running cycles for

our profiling tool to execute one instruction per cycle. By

definition, we can see that either the produce-distance or

the consume-distance is a dynamic concept; in other

words, it is a concept relative to program’s one specific

run. In different runtime environment, the different

branches will be executed in the same thread. So, either

of them is calculated for specific data, and both of them

must be calculated at running time. For thread i and its

successor thread i+1, starting at almost the same time, if

the latter’s consume-distance is less than the former’s

produce-distance, there will be a dependence violation. 

In this paper, we selected the ratio of consume-distance

to produce-distance (α) to evaluate the inter-thread data

dependence pattern. There will be a violation when α<1.

Smaller ratio number means lower performance. For

example, when α is close to 0, it means that the specula-

tive threads are running serially, even with perfect syn-

chronization strategy.

D. Profiling Framework

We used the GUN Prof (Gprof) tool to choose the ‘hot’

area in the program, which can be used to analyze the

running time proportion of procedures in the given pro-

gram and to generate the function call graphs. In our

study, we picked out the ‘hot’ procedures and loops that

occupy more than 5% of the total program execution

time, and then these procedures were treated as the fur-

ther analysis input. 

The profiling tools we developed in our investigation

are named as ProFun and ProLoop [18], and all of them

were extended from sim-fast, the fasted simulator of Sim-

pleScalar tool set which executes one instruction per

cycle. ProFun is used to profile the procedure, and Pro-

Loop is for Loop. 

Fig. 3. Produce-distance and consume-distance.
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The profiling framework is shown in Fig. 4. 

(1) After the source code was profiled by Gprof, a list

of the ‘hot’ procedures will help us to find out the ‘hot’

parts for ProFun and ProLoop each. 

(2) Through an input file with a ‘hot’ procedures list

for ProFun or adding the flags to ‘hot’ loop body for Pro-

Loop, the tool can get the memory access addressing the

range of these ‘hot’ fragments. 

(3) The binary code is transformed into the disassem-

bled instructions by objdump tool. 

(4) Then, we conduct the profiling by capturing ‘load’

and ‘store’ operations to work out the experimental results.

The key data structure and calculation mechanism in

profiling are shown in following sections.

E. Key Data Structure and Calculation
Mechanism

Fig. 5 shows two key list structure named ‘call_list’

and ‘p_write_list’ in ProFun design. They are used

together to record and compute all of the profiling data in

speculation. A similar mechanism is also used in Pro-

Loop. 

The ‘call_list’ is used to reserve the relevant profiling

data for each speculative thread (procedure calls or loop

iterations). As shown in Fig. 5, the ‘call_list’ is composed

of ‘call_list_entry_t’, which will record the function id,

start time to identify the only call itself, and end time for

computing the profiling goals. 

Another ‘p_write_list’ structure is used to remember

the writes by the speculative threads for every memory

address. The ‘p_write_hash_t’ has 65,536 items as the

memory space has 232 address space; ‘p_write_list’ is

composed of the ‘p_write_hash_entry_t’, which is used

to record the function id, start time to identify the specific

procedure calls and access address, write time, write time

in TLS parallelism to compute the dependence distance

and speedup. 

Memory dependence distance in speculation is gained

in the following way: 

(1) When the profiling tool enters a ‘jal’ or ‘jalr’

instruction followed by a name in the input file, with

‘hot’ names, it will create a ‘call_list_entry_t’. 

(2) For store operations, it will record them in

‘p_write_list’; and for load operations, it will find the

item with the same access address in ‘p_write_list’.

(3) Then, it would compute the memory dependence

distance with the relative call’s information in ‘call_list’,

using the analysis method described in Section IV-C. 

There is a search for the load operation to find its rela-

tive call in ‘call_list’, and it will decrease the profiling

performance if too many calls for one procedure are

searched serially. So, we defined the ‘call_hash_list’ to

accelerate the search speed as shown in Fig. 5.

We can get the speculative speedup as follows: 

(1) When a speculative thread fork is encountered, the

start time in speculation is stored, and the header thread

executes. 

(2) When the later speculative thread(s) begins to exe-

cute, its start time is set as the same as the header’s.

(3) When dependence violation happens between the

two speculative threads, the strategy is to delay the com-

putation of a thread to perfectly avoid the need to roll-

back any of the computation.

(4) Finally, the speedup is calculated by the total exe-

cution time in both speculation and serial mode.

Fig. 5. Key data structure in ProFun.

Fig. 4. Profiling framework.
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V. EXPERIMENT ANALYSIS

For TLS used to accelerate traditional serial codes, we

have chosen gzip, vpr, gcc, mcf, parser, bzip2, and twolf

that are written in C language as the representative gen-

eral purpose computing applications from SPEC CPU2000

benchmark suite. They’re classic and more suitable for

TLS performance evaluation. The description of SPEC

CPU2000 is shown in Table 1.

Then, by running the profiling tools, we will focus on

analyzing the coverage parallelism, thread size, inter-

thread data dependence feature and speedup in each

benchmark. All experiments are done in Linux on the

×86 platform. The destination ISA in the tool is PISA,

and the cross compiler from the gcc-2.7.2.3 with recon-

structed backend is provided by SimpleScalar tool set. 

A. Speedup

Fig. 6 shows the compared speedup in loop and proce-

dure level speculation. It shows the max speedup poten-

tial under infinite core numbers in TLS. Disappointingly,

most of their speedups are so low that they cannot reach 2

in loop level speculation. The best gzip application can

only get a 2.4X speedup. Similar low speedup results are

also available from prior studies [6, 15]. It is proven that

our light-weighted profiling mechanism is also effective.

The results are different in procedure level speculation

in two aspects. (1) First, it shows that parser, gcc, bzip2,

gzip, and vpr’s speedups are also low in procedure level

speculation. (2) However, it is surprising that mcf and

twolf get much higher speedups than in loop level specu-

lation. The best mcf application can get almost 3.5X

speedup in the procedure level speculation. In other

words, the mcf is more suitable for procedure level spec-

ulation, rather than in loop level. 

The performance improvement in mcf and twolf is so

interesting; and the conventional perception is that specu-

lative performance in loop level is better than that in pro-

cedure level. Then, we will analyze the applications from

their thread size, parallelism coverage, and inter-thread

data dependence feature (α), according to the metrics

described in Section IV-A.

B. Average Thread Size

From Table 2, it is also to be noticed that the specula-

tive thread size of mcf and twolf in procedure level spec-

ulation is bigger in Table 2. We will discuss it further by

the assembled code analysis, as follows: 

The ‘hot’ procedures in mcf are ‘refresh_potential’,

‘price_out_impl’, and ‘primal_bea_mpp’. The ‘refresh_potential’

and ‘price_out_impl’ take up nearly 86% of the total run-

ning time. In the assemble code analysis, it is found that

these two ‘hot’ procedure concludes some ‘hot’ loops in

them. So its size is bigger than that in loop level specula-

tion. In this way, former inter-thread data dependences in

loop level speculation are held in a single procedure level

thread.

The reason in twolf is similar. It is found that the four

hot loops in program are respectively included in four hot

procedures (‘term_newpos_b’, ‘new_dbox’, ‘term_newpos_a’,

and ‘new_dbox_a’), and these four hot procedures are

included in the main loop body. By speculating at the

proper procedure level that the loop level could not, the

inherently higher independence in procedure structure

brings less inter-thread data dependence violations. There-

fore, they obtain higher speedup in procedure level spec-

ulation.

C. Parallelism Coverage

Table 3 shows the compared parallelism coverage

Table 1. SPEC CPU2000 description

Program Input size Description

gzip lgred Compression

vpr lgred FPGA circuit placement and routing

gcc lgred C programming language compiler

mcf lgred Combinatorial optimization

parser lgred Word processing

bzip2 lgred Compression

twolf lgred Place and route simulator

Fig. 6. Speedup in loop and procedure level speculation.

Table 2. Average thread size in loop and procedure level
speculation

Benchmark Loop Procedure

gcc 4.50E+03 3.30E+05

bzip2 9.50E+03 4.60E+07

vpr 2.90E+03 3.60E+02

mcf 2.30E+04 8.00E+06

parser 1.90E+06 1.20E+02

towlf 2.30E+04 4.00E+05

gzip 9.80E+01 1.30E+07
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results. It is to be noticed that the coverage ratios for each

application are similar in both loop and procedure level

speculation. It shows that the ‘hot’ procedure is either in

a ‘hot’ loop or holds one or some ‘hot’ loop structures.

So, it is pointed out that the loop structure is the origin of

effective speculative level parallelism.

Also, it has been observed that coverage ratios for gcc,

vpr, and parser are all below 50%, so their ideal max

speedup is less than 2, computed by Amdahl’s law. It

means that low coverage ratio leads to inevitably low

speedup.

D. Inter-thread Data Dependence Feature

The compared inter-thread data dependence feature (α)

is shown in Table 4. This is the point why vpr, gcc, bzip2,

gzip, and parser’s max potential speedups are so low. In

the loop level speculation, the reason is that each of their

average α is too small. Most of their α are less than 0.3,

which means the data dependence violations can badly

hurt the TLS performance. They get low speedups for the

similar reasons in procedure level speculation. It shows

that severe inter-thread data dependence violations can

also badly affect speculative procedure level parallelism.

In overall, it is pointed out that the inherent ubiquitous

inter-thread data dependences in general computing appli-

cations can badly affect their parallelizing performance in

TLS, whether it is in loop level or in procedure level

speculation.

In Table 4, it has been observed that the biggest change

in mcf and twolf is their average α number. For them,

bigger α number means lower inter-thread data depen-

dence violations affect in speculation. That leads them to

obtain higher speedup in procedure level speculation. 

As a result, it is found that because of the inherently

better independence in procedure structure, some general

purpose computing applications may obtain higher speedup

in procedure level speculation than that in loop level.

This is especially in applications that their ‘hot’ proce-

dure body concludes ‘hot’ loops.

VI. CONCLUSIONS

This paper presents ways to analyze speculative paral-

lelism characterization in general purpose computing

applications. It makes the following main contributions:

• We explored the loop and procedure level speculative

potential in general purpose computing applications and

showed that most applications are not suitable for TLS.

• It is found that the procedure-level TLS would per-

form better than loop-level TLS, when the ‘hot’ proce-

dure body concludes ‘hot’ loops.

• It is suggested that by speculating the proper proce-

dure level that the loop-level TLS could not, the inher-

ently higher independence in procedure structure would

bring less inter-thread data dependence violations.
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