
Korean J. Math. 23 (2015), No. 1, pp. 153–161
http://dx.doi.org/10.11568/kjm.2015.23.1.153

NONTRIVIAL SOLUTIONS FOR AN ELLIPTIC SYSTEM

Hyewon Nam∗ and Seong Cheol Lee

Abstract. In this work, we consider an elliptic system −4u = au+ bv + δ1u
+ − δ2u− + f1(x, u, v) in Ω,

−4v = bu+ cv + η1v
+ − η2v− + f2(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ RN be a bounded domain with smooth boundary. We
prove that the system has at least two nontrivial solutions by apply-
ing linking theorem.

1. Introduction and Background

Presently there are many significant results with respect to the elliptic
system {

−4u = λu+ δv + h1(x, u, v),
−4v = θu+ νv + h2(x, u, v),

in Ω, where Ω ⊂ Rn is bounded smooth domain, subject to Dirichlet
boundary conditions u = v = 0 on ∂Ω, hi, i = 1, 2 are real valued
functions and λ, δ, ν and θ are real numbers. [2, 6–8]
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Many authors also investigated the problem −4u = au+ bv + (u+)p + f1 in Ω,
−4v = bu+ av + (v+)q + f2 in Ω,

u = v = 0 on ∂Ω.

where u+ = max{0, u(x)}. Here Ω is a bounded smooth domain in Rn

with n ≥ 2. [4, 5]
In this paper we prove the existence of two nontrivial solutions for

a general elliptic system. We use a variational approach and look for
critical points of a suitable functional I on a Hilbert space H. Since
the functional is strongly indefinite, it is convenient to use the notion of
linking theorem. In Section 2, we find a suitable functional I on a Hilbert
space H. In Section 3, we prove the suitable version of the Palais-Smale
condition for the topological method. In Section 4, we apply the two
critical points theorem.

We recall some basic theorem and set up some terminology. Let H
be a Hilbert space and V a C2 complete connected Finsler manifold.
Suppose H = H1 ⊕H2 and let Hn = H1n ⊕H2n be a sequence of closed
subspaces of H such that

Hin ⊂ Hi, 1 ≤ dimHin < +∞ for each i = 1, 2 and n ∈ N

Moreover suppose that there exist e1 ∈ ∩∞n=1H1n, and e2 ∈ ∩∞n=1H2n,
with ‖e1‖ = ‖e2‖ = 1.

For any Y subspace of H, consider Bρ(Y ) := {u ∈ Y |‖u‖ ≤ ρ} and
denote by ∂Bρ(Y ) the boundary of Bρ(Y ) relative to Y . Furthermore
define, for any e ∈ H,

QR(Y, e) := {u+ ae ∈ Y ⊕ [e]|u ∈ Y, a ≥ 0, ‖u+ ad‖ ≤ R}

and denote by ∂QR(Y, e) its boundary relative to Y ⊕ [e], and denote by
X = H × V .

We recall the two critical points theorem in [3].

Theorem 1.1. Suppose that f satisfies the (PS)∗ condition with
respect to Hn. In addition assume that there exist ρ, R, such that
0 < ρ < R and

sup
∂QR(H2,e1)×V

f < inf
∂Bρ(H1)×V

f,

sup
QR(H2,e1)×V

f < +∞, inf
Bρ(H1)×V

f < −∞,
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Then there exist at least 2 critical levels of f . Moreover the critical levels
satisfy the following inequalities

inf
Bρ(H1)×V

f ≤ c1 ≤ sup
∂QR(H2,e1)×V

f < inf
∂Bρ(H1)×V

f ≤ c2 ≤ sup
QR(H2,e1)×V

f,

and there exist at least 2 + 2 cuplength(V) critical points of f .

2. Notations and main result

Let Ω ⊂ RN be a bounded domain with smooth boundary and H =
W 1,p

0 (Ω), the usual Sobolev space with the norm ‖u‖2 =
∫

Ω
|∇u|2dx.

In this paper, we consider the existence of nontrivial solutions to the
elliptic system −4u = au+ bv + δ1u

+ − δ2u
− + f1(x, u, v) in Ω,

−4v = bu+ cv + η1v
+ − η2v

− + f2(x, u, v) in Ω,
u = v = 0 on ∂Ω.

(1)

And there exists a function F : Ω̄ × R2 → R such that ∂F
∂u

= f1 and
∂F
∂v

= f2 without loss of generality, we set

F (x, u, v) =

∫ (u,v)

(0,0)

f1(x, u, v)du+ f2(x, u, v)dv.

Then F ∈ C1(Ω̄×R2, R).
We consider the following assumptions.
(F1) There exist M > 0 and α > 2 such that

0 < αF (x, u, v) ≤ uFu(x, u, v) + vFv(x, u, v)

for all (x, u, v) ∈ Ω̄×R2 with u2 + v2 > M2.
(F2) There exist constants a1 > 0 and a2 > 0 such that

|Fu(x, u, v)|+ |Fv(x, u, v)| ≤ a1 + a2(|u|r + |v|r)
where 1 ≤ r < (N + 2)/(N − 2) if N > 2, 1 ≤ r <∞ otherwise.

(F3) For (0, v)→ (0, 0),

F (x, 0, v)

v2
→ 0.

Remark 2.1. The condition (F1) shows that there exist constants
b1 > 0 and b2 such that(cf. [1] )

F (x, u, v) ≥ b1(|u|α + |v|α)− b2.
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Let λk denote the eigenvalues and ek the corresponding eigenfunc-
tions, suitably normalized with respect to L2(Ω) inner product, of the
eigenvalue problem −∆u = λu in Ω, with Dirichlet boundary condition,
where each eigenvalue λk is respected as often as its multiplicity. We
recall that 0 < λ1 < λ2 ≤ λ3 ≤ · · · , λi → +∞ and that e1 > 0 for all
x ∈ Ω. Then H = span{ei|i ∈ N}.

Let e1
i = (ei, 0) and e2

i = (0, ei). We define Hj = span{eji |i ∈ N}, for
j = 1, 2 and E = H1 ⊕H2 with the norm ‖(u, v)‖2

E = ‖u‖2 + ‖v‖2.
We define the energy functional associated to (1) as

I(u, v) =
1

2

∫
Ω

(|∇u|2 + |∇v|2)dx− 1

2

∫
Ω

(au2 + 2buv + cv2)dx

−1

2

∫
Ω

(δ1(u+)2 − δ2(u−)2 + η1(v+)2 − η2(v−)2)dx(2)

−
∫

Ω

F (x, u, v, w)dx

It is easy to see that I ∈ C1(E,R) and thus it makes sense to lock for
solutions to (1) in weak sense as critical points for I i.e.(u, v) ∈ E such
that I ′(u, v) = 0, where

I ′(u, v) · (φ, ψ) =

∫
Ω

(∇u∇φ+∇v∇ψ)dx

−
∫

Ω

(auφ+ bvφ+ buψ + cvψ)dx

−
∫

Ω

(δ1u
+φ− δ2u

−φ+ η1v
+ψ − η2v

−ψ)dx

−
∫

Ω

(f1(x, u, v)φ+ f2(x, u, v)ψ)dx.

We will prove the following theorem.

Theorem 2.1. Assume F satisfies (F1), (F2) and (F3) with α =
r + 1. If a, b, c, δ, and η are positive with a + b + δ1 + δ2 < λ1 and
b+ c+η1 +η2 < λ1 then system (1) has at least two nontrivial solutions.

3. The Palais Smale star condition

In this section we will prove the (PS)∗c condition which was required
for the application of Theorem 1.1. In the following, we consider the
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following sequence of subspaces of E :

En = span{eji |i = 1, · · · , n and j = 1, 2}, for n ≥ 1.

Lemma 3.1. Assume F satisfies (F1) and (F2) with α = r + 1. If
a+ b+ δ1 + δ2 < λ1 and b+ c+ η1 + η2 < λ1, then any (PS)∗c sequence
is bounded.

Proof. Let {(un, vn)} ⊂ E be a sequence such that

(un, vn) ∈ En, I(un, vn)→ c, I ′n(un, vn)→ 0 as n→∞

In the following we denote different constants by C1, C2 etc. (F1) and
Remark imply that

C1 +
1

2
o(1)(‖un‖+ ‖vn‖) ≥ I(un, vn)− 1

2
I ′n(un, vn) · (un, vn)

=
1

2

∫
Ω

(unf1 + vnf2)dx−
∫

Ω

Fdx

≥ (
α

2
− 1)

∫
Ω

F (x, un, vn)dx(3)

≥ (
α

2
− 1)b1

∫
Ω

(|un|α + |vn|α)dx− C2

≥ (
α

2
− 1)b1(‖un‖αLα + ‖vn‖αLα)− C2

On the other hand,

o(1)‖un‖ ≥ I ′n(un, vn) · (un, 0)

= ‖un‖2 −
∫

Ω

(au2
n + bunvn)dx

−
∫

Ω

(δ1(u+
n )2 − δ2(u−n )2)dx−

∫
Ω

f1(x, un, vn)undx,

o(1)‖vn‖ ≥ I ′n(un, vn) · (0, vn)

= ‖vn‖2 −
∫

Ω

(bunvn + cv2
n)dx

−
∫

Ω

(η1(v+
n )2 − η2(v−n )2)dx−

∫
Ω

f2(x, un, vn)vndx.

We know that ∫
Ω

(u+)2dx ≤ ‖u‖2
L2 ≤

1

λ1

‖u‖2
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and ∫
Ω

(u−)2dx ≤ ‖u‖2
L2 ≤

1

λ1

‖u‖2

for u ∈ H. Using (F2), we obtain

‖un‖2 + ‖vn‖2 ≤ o(1)(‖un‖+ ‖vn‖)

+

∫
Ω

(au2
n + 2bunvn + cv2

n)dx+

∫
Ω

(δ1(u+
n )2 − δ2(u−n )2)dx

+

∫
Ω

(η1(v+
n )2 − η2(v−n )2)dx+

∫
Ω

(unf1 + vnf2)dx

≤ o(1)(‖un‖+ ‖vn‖)(4)

+
a+ b+ δ1 + δ2

λ1

‖un‖2 +
a+ b+ η1 + η2

λ1

‖vn‖2

+C3

∫
Ω

(|un|r+1 + |vn|r+1)dx+ C4.

(4) imply that if a+ b+ δ1 + δ2 < λ1 and b+ c+ η1 + η2 < λ1 then

‖un‖2 + ‖vn‖2 ≤ o(1)C5(‖un‖+ ‖vn‖)

+C6

∫
Ω

(|un|r+1 + |vn|r+1)dx+ C7.(5)

Combining (3), (5) and using α = r + 1, one infers that

‖un‖2 + ‖vn‖2 ≤ o(1)C8(‖un‖+ ‖vn‖) + C9.

This yields {(un, vn)} is bounded.

Lemma 3.2. Assume F satisfies (F1) and (F2) with α = r + 1. If
a + b + δ1 + δ2 < λ1 and b + c + η1 + η2 < λ1, then the functional I
satisfies the (PS)∗c condition with respect to En.

Proof. By Lemma 3.1, any (PS)∗c sequence {(un, vn)} in E is bounded
and hence {(un, vn)} has a weakly convergent subsequence. That is
there exist a subsequence {(unj , vnj)} and (u, v) ∈ E, with unj ⇀ u and
vnj ⇀ v. Since {unj} and {vnj} are bounded, by Remark of Rellich-
Kondrachov compactness theorem [4], unj → u, vnj → v and thus I
satisfies (PS)∗c condition.
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4. Proof of main theorem

Lemma 4.1. Assume F satisfies (F3). If c < λ1, then there exists
ρ1 > 0 such that

inf
∂Bρ1 (H2)

I > 0.

Proof. By (F3), for any ε > 0, there exists ρ > 0 such that

0 < ‖v‖ < ρ⇒ |F (x, 0, v)| < ε|v|2.

Then |
∫

Ω
F (x, 0, v)dx| <

∫
Ω
|F (x, 0, v)|dx <

∫
Ω
ε|v|2dx < ε

λ1
‖v‖2 and

hence

I(0, v) =
1

2

∫
Ω

|∇v|2dx− c

2

∫
Ω

v2dx

−1

2

∫
Ω

(η1(v+)2 − η2(v−)2)dx−
∫

Ω

F (x, 0, v)dx

>
1

2
‖v‖2 − c+ η1 + η2

2λ1

‖v‖2 − ε

λ1

‖v‖2

=
1

2
(1− c+ η1 + η2 + 2ε

λ1

)‖v‖2 > 0

which gives the result for sufficiently small ε. Therefore we can choose
0 < ρ1 < ρ such that I(0, v) > 0 for any ‖v‖ = ρ1.

Lemma 4.2. Assume F satisfies (F1). If a, b, c, δ1, δ2, η1, and η2 are
positive, then there exists an R > 0 such that for any R1 > R

sup
∂QR1

(H1,e21)

I < 0.
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Proof. In the following we denote different constants by C1, C2 etc.
Remark implies that

I(u, βe1) =
1

2

∫
Ω

|∇u|2dx+
λ1β

2

2
− 1

2

∫
Ω

au2dx− bλ1β −
cβ2

2

−1

2

∫
Ω

(δ1(u+)2 − δ2(u−)2)dx

−1

2

∫
Ω

(η1((βe1)+)2 − η2((βe1)−)2)dx−
∫

Ω

F (x, u, βe1)dx

≤ 1

2
‖u‖2 +

λ1β
2

2
− bλ1β +

δ2

2

∫
Ω

(u−)2dx

+
η2

2

∫
Ω

((βe1)−)2dx−
∫

Ω

F (x, u, βe1)dx

≤ 1

2
‖u‖2 +

λ1β
2

2
− bλ1β +

δ2

2λ1

‖u‖2 +
η2β

2

2λ1

−b1

∫
Ω

(|u|α + |βe1|α)dx+ C1

≤ λ1 + δ2

2λ1

‖u‖2 +
(λ2

1 + η2)β2

2λ1

− bλ1β − C2‖u‖α − C3|β|α + C4,

for any (u, 0) ∈ H1 and any constant β. Since α > 2, I(u, βe1) → −∞
for ‖u‖ → ∞ or |β| → ∞. Therefore we can choose 0 < R1 < ∞ such
that I(u, βe1) < 0 for any ‖(u, βe1)‖E = R1.

Proof of Theorem 2.1.
By Lemma 4.1 and 4.2, there exists 0 < ρ1 < R1 such that

sup
∂QR1

(H1,e21)

I < 0 < inf
∂Bρ1 (H2)

I.

By Theorem 1.1, I(u, v) has at least two nonzero critical values c1, c2

inf
Bρ1 (H2)

I ≤ c1 ≤ sup
∂QR1

(H1,e21)

I < inf
∂Bρ1 (H2)

I ≤ c2 ≤ sup
QR1

(H1,e21)

I.

Therefore, (1) has at least two nontrivial solutions.
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