DOI QR코드

DOI QR Code

THE BASKET NUMBERS OF KNOTS

  • Received : 2014.01.15
  • Accepted : 2015.03.12
  • Published : 2015.03.30

Abstract

Plumbing surfaces of links were introduced to study the geometry of the complement of the links. A basket surface is one of these plumbing surfaces and it can be presented by two sequential presentations, the first sequence is the flat plumbing basket code found by Furihata, Hirasawa and Kobayashi and the second sequence presents the number of the full twists for each of annuli. The minimum number of plumbings to obtain a basket surface of a knot is defined to be the basket number of the given knot. In present article, we first find a classification theorem about the basket number of knots. We use these sequential presentations and the classification theorem to find the basket number of all prime knots whose crossing number is 7 or less except two knots $7_1$ and $7_5$.

Keywords

References

  1. J. H. Conway, An enumeration of knots and links and some of their algebraic properties, Proceedings of the conference on Computational problems in Abstract Algebra held at Oxford in 1967, Pergamon Press, 329-358.
  2. Y. Choi, Y. Chung and D. Kim, The complete list of prime knots whose flat plumbing basket numbers are 6 or less, preprint, arXiv:1408.3729.
  3. R. Furihata, M. Hirasawa and T. Kobayashi, Seifert surfaces in open books, and a new coding algorithm for links, Bull. London Math. Soc. 40 (3) (2008), 405-414. https://doi.org/10.1112/blms/bdn020
  4. D. Gabai, The Murasugi sum is a natural geometric operation, in: Low-Dimensional Topology (San Francisco, CA, USA, 1981), Amer. Math. Soc., Providence, RI, 1983, 131-143.
  5. D. Gabai, The Murasugi sum is a natural geometric operation II, in: Combinatorial Methods in Topology and Algebraic Geometry (Rochester, NY, USA, 1982), Amer. Math. Soc., Providence, RI, 1985, 93-100.
  6. J. Gross, D. Robbins and T. Tucker, Genus distribution for bouquets of circles, J. Combin. Theory B. Soc. 47 (3) (1989) 292-306. https://doi.org/10.1016/0095-8956(89)90030-0
  7. J. Gross and T. Tucker, Topological graph theory, Wiley-Interscience Series in discrete Mathematics and Optimization, Wiley & Sons, New York, 1987.
  8. J. Harer, How to construct all fibered knots and links, Topology 21 (3) (1982) 263-280. https://doi.org/10.1016/0040-9383(82)90009-X
  9. S. Hirose and Y. Nakashima, Seifert surfaces in open books, and pass moves on links, arXiv:1311.3383. https://doi.org/10.1142/S0218216514500217
  10. C. Hayashi and M. Wada, Constructing links by plumbing flat annuli, J. Knot Theory Ramifications 2 (1993), 427-429. https://doi.org/10.1142/S0218216593000246
  11. D. Kim, Basket, flat plumbing and flat plumbing basket surfaces derived from induced graphs, preprint, arXiv:1108.1455.
  12. D. Kim, The boundaries of dipole graphs and the complete bipartite graphs $K_{2,n}$, Honam. Math. J. 36 (2) (2014), 399-415, arXiv:1302.3829. https://doi.org/10.5831/HMJ.2014.36.2.399
  13. D. Kim, A classification of links of the flat plumbing basket numbers 4 or less, Korean J. of Math. 22 (2) (2014), 253-264. https://doi.org/10.11568/kjm.2014.22.2.253
  14. L. H. Kauffman and S. Lambropoulou, On the Classification of Rational Knots, Adv. Appl. Math. 33 (2) (2004), 199-237. https://doi.org/10.1016/j.aam.2003.06.002
  15. D. Kim, Y. S. Kwon and J. Lee, Banded surfaces, banded links, band indices and genera of links, J. Knot Theory Ramifications 22(7) 1350035 (2013), 1-18, arXiv:1105.0059.
  16. T. Nakamura, On canonical genus of fibered knot, J. Knot Theory Ramifications 11 (2002), 341-352. https://doi.org/10.1142/S0218216502001652
  17. T. Nakamura, Notes on braidzel surfaces for links, Proc. of AMS 135 (2) (2007), 559-567. https://doi.org/10.1090/S0002-9939-06-08478-4
  18. K. Reidemeister, Homotopieringe und Linsenraume, Abh. Math. Sem. Hansischen Univ., 11 (1936), 102-109.
  19. L. Rudolph, Quasipositive annuli (Constructions of quasipositive knots and links IV.), J. Knot Theory Ramifications 1 (4) (1992) 451-466.. https://doi.org/10.1142/S0218216592000227
  20. L. Rudolph, Hopf plumbing, arborescent Seifert surfaces, baskets, espaliers, and homogeneous braids, Topology Appl. 116 (2001), 255-277. https://doi.org/10.1016/S0166-8641(00)90091-9
  21. H. Schubert, Knoten mit zwei Brucken, Math. Zeitschrift, 65 (1956), 133-170. https://doi.org/10.1007/BF01473875
  22. H. Seifert, Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.
  23. J. Stallings, Constructions of fibred knots and links, in: Algebraic and Geometric Topology (Proc. Sympos. PureMath., Stanford Univ., Stanford, CA, 1976), Part 2, Amer. Math. Soc., Providence, RI, 1978, pp. 55-60.
  24. M. Thistlethwaite, Knotscape, available at http://www.math.utk.edu/-morwen/knotscape. html.
  25. T. Van Zandt. PSTricks: PostScript macros for generic TEX. Available at ftp://ftp. princeton.edu/pub/tvz/.