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LOCAL VOLATILITY FOR QUANTO OPTION PRICES

WITH STOCHASTIC INTEREST RATES

Youngrok Lee and Jaesung Lee

Abstract. This paper is about the local volatility for the price of
a European quanto call option. We derive the explicit formula of the
local volatility with constant foreign and domestic interest rates by
adapting the methods of Dupire and Derman & Kani. Furthermore,
we obtain the Dupire equation for the local volatility with stochastic
interest rates.

1. Introduction

A quanto is a type of financial derivative whose pay-out currency dif-
fers from the natural denomination of its underlying financial variable,
which allows that investors are to obtain exposure to foreign assets with-
out the corresponding foreign exchange risk. A quanto option has both
the strike price and the underlying asset price denominated in foreign
currency. At exercise, the value of the option is calculated as the op-
tion’s intrinsic value in the foreign currency, which is then converted to
the domestic currency at the fixed exchange rate.

Pricing options based on the classical Black-Scholes(1973) [1] model,
on which most of the research on quanto options has focused, has a prob-
lem of assuming a constant volatility which leads to smiles and skews
in the implied volatility for the underlying asset price. One way to
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overcome such handicaps of constant volatility is using a local volatil-
ity model which treats the volatility as a deterministic function of the
underlying asset price, current time, maturity and the strike price.

Indeed, local volatility models were introduced and developed by B.
Dupire(1994) [3] and E. Derman & I. Kani(1998) [2] as they found that
there is a unique diffusion process consistent with the risk-neutral densi-
ties derived from the market prices of European options. The main ad-
vantage of local volatility models is that the only source of randomness
is the price of underlying asset, making local volatility easy to calibrate.

In this paper, we modify and adjust the methods of [3] and [2] to
obtain the explicit formula of local volatility for the quanto option price
with constant foreign and domestic riskless rates. And then we derive
an equation of local volatility for the quanto option price under the
stochastic foreign and domestic riskless rates.

We derive the risk-neutral dynamics of the process for the underlying
asset with respect to different currency in Section 2. Then, in Section
3, under the model specified in Section 2, we adapt the method of [2] to
find the explicit formula of local volatility for the quanto option price
with constant foreign and domestic riskless rates. Finally, in Section 4,
we derive the analogue of Dupire equation for the local volatility for the
quanto option price with constant foreign and domestic riskless rates,
and extend this equation to the case of stochastic foreign and domestic
riskless rates.

2. A risk-neutral dynamics in the quanto framework

Given a complete probability measure space (Ω,F ,P), let St be the
asset price on a non-dividend paying asset in foreign currency and Vt be
the foreign exchange rate in domestic currency of one unit of the foreign
currency with constant volatilities σS and σV , respectively, which have
the following dynamics:{

dSt = µSStdt+ σSStdBt,

dVt = µV Vtdt+ σV VtdWt,

where µS and µV are constants. Also, Bt and Wt are two standard
Brownian motions with the correlation ρ.

Now, we will find the risk-neutral dynamics of the asset price St in
domestic currency on a non-dividend paying asset. By the no-arbitrage
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condition and the risk-neutral valuation method, under the risk-neutral
probability measure Q, it holds that

EQ [VT | Ft] = Vte
(rd−rf)(T−t),

where the constants rf and rd are the foreign and domestic riskless rates,
respectively. Thus, the risk-neutral dynamics of Vt in domestic currency
can be represented as

(1) dVt =
(
rd − rf

)
Vtdt+ σV VtdW̃t,

where W̃t is a standard Brownian motion under the risk-neutral prob-
ability measure Q. Under the probability measure P, applying StVt to
the Itô formula, we have

d (StVt) = VtdSt + StdVt + dStdVt

= Vt (µSStdt+ σSStdBt) + St (µV Vtdt+ σV VtdWt) + ρσSσV StVtdt

= StVt (µS + µV + ρσSσV ) dt+ StVt (σSdBt + σV dWt) ,

and hence, under the risk-neutral probability measure Q, it follows that

(2) d (StVt) = rfStVtdt+ StVt

(
σSdB̃t + σV dW̃t

)
in domestic currency, where B̃t is a standard Brownian motion under
Q. From (1), using the Itô formula, the risk-neutral dynamics of 1

Vt
in

domestic currency can be also represented as

d

(
1
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)
=
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V 2
t
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}
+

1

V 3
t

σ2
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Vt
dt− σV

Vt
dW̃t.



84 Y. Lee and J. Lee

Finally, using again the Itô formula with (2) and (3), the risk-neutral
dynamics of St in domestic currency can be obtained as follows:

dSt = d

(
StVt

1

Vt

)
=

1

Vt
d (StVt) + StVtd

(
1

Vt

)
+ d (StVt) d

(
1

Vt

)
=

1

Vt

{
rfStVtdt+ StVt

(
σSdB̃t + σV dW̃t

)}
+ StVt

{(
rd − rf + σ2

V

) 1

Vt
dt− σV

Vt
dW̃t

}
− St

(
ρσSσV + σ2

V

)
dt

=
(
rf − ρσSσV

)
Stdt+ σSStdB̃t.

Adapting and modifying the methods of [2], [3], we will derive the
local volatility for the quanto option price with constant riskless rates in
next sections. Suppose that the asset price St in domestic currency on
a non-dividend paying asset follows the risk-neutral dynamics given by

(4) dSt =
{
rf − ρσS (t, St)σV

}
Stdt+ σS (t, St)StdB̃t,

where σS (t, St) denotes the local volatility function for this process.

3. The local volatility for the standard quanto option price

E. Derman and I. Kani(1998) [2] characterized the local volatility
as a risk-neutral expectation of the instantaneous volatility, conditional
on the final asset price being equal to the strike price. The following
theorem adapts their method to obtain the quanto option framework
with constant foreign and domestic riskless rates.

Theorem 3.1. Suppose that the asset price in domestic currency
is the stochastic process which follows (4). Let Cq be the price of a
European quanto call option at time t in domestic currency with foreign
strike price K and maturity T . Then the local volatility for this process
is expressed by

σS (St;K,T )(5)

=
ρσV

(
Cq−K

∂Cq
∂K

)
±
√
ρ2σ2

V

(
Cq−K

∂Cq
∂K

)2
+2K2 ∂2Cq

∂K2

{
∂Cq
∂T

+rfK
∂Cq
∂K
−(rf−rd)Cq

}
K2 ∂2Cq

∂K2

.
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Proof. We can write the price of a European quanto call option at
time t in domestic currency with foreign strike price K and maturity T
as

(6) Cq (St;K,T ) = EQ

[
V0e

−rd(T−t) max (ST −K, 0)
∣∣∣Ft]

under the risk-neutral probability measure Q, where V0 is the some pre-
determined fixed exchange rate.
Differentiating (6) with respect to K, it gives

∂Cq
∂K

= −EQ

[
V0e

−rd(T−t)H (ST −K)
∣∣∣Ft] ,

where H (·) denotes the Heaviside function. Differentiating again (6)
with respect to K, it gives

∂2C

∂K2
= EQ

[
V0e

−rd(T−t)δ (ST −K)
∣∣∣Ft] ,

where δ (·) denotes the Dirac-delta function. Also, differentiating (6)
with respect to T , it gives

∂Cq
∂T

= −rdCq + V0e
−rd(T−t) ∂

∂T
EQ [max (ST −K, 0)| Ft] .

Applying the Itô formula to the option’s payoff, we have

dmax (ST −K, 0)

=
∂

∂ST
max (ST −K, 0)dST +

1

2

∂2

∂S2
T

max (ST −K, 0) (dST )2

= H (ST −K)
{(
rf − ρσSσV

)
STdT + σSSTdB̃T

}
+

1

2
δ (ST −K)σ2SS

2
TdT

from (4).
Now, taking the expectation on both sides, it follows that

dEQ [max (ST −K, 0)| Ft]

=
(
rf − ρσSσV

)
EQ [STH (ST −K)| Ft] dT +

1

2
EQ
[
σ2SS

2
T δ (ST −K)

∣∣Ft] dT
=
(
rf − ρσSσV

)
EQ [ (ST −K)H (ST −K)| Ft] dT

+
(
rf − ρσSσV

)
KEQ [H (ST −K)| Ft] dT +

1

2
EQ
[
σ2SS

2
T δ (ST −K)

∣∣Ft] dT
=
(
rf − ρσSσV

)
EQ [max (ST −K, 0)| Ft] dT

+
(
rf − ρσSσV

)
KEQ [H (ST −K)| Ft] dT +

1

2
EQ
[
σ2SS

2
T δ (ST −K)

∣∣Ft] dT,
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and hence,

∂

∂T
EQ [max (ST −K, 0)| Ft]

=
(
rf − ρσSσV

)
EQ [max (ST −K, 0)| Ft]

+
(
rf − ρσSσV

)
KEQ [H (ST −K)| Ft] +

1

2
EQ
[
σ2
SS

2
T δ (ST −K)

∣∣Ft] .
Finally, we obtain

∂Cq
∂T

= −rdCq +
(
rf − ρσSσV

)
Cq −

(
rf − ρσSσV

)
K
∂Cq
∂K

+
1

2
V0e

−rd(T−t)EQ
[
σ2
SS

2
T δ (ST −K)

∣∣Ft]
= −rdCq +

(
rf − ρσSσV

)
Cq −

(
rf − ρσSσV

)
K
∂Cq
∂K

+
1

2
V0e

−rd(T−t)EQ
[
EQ
[
σ2
SS

2
T δ (ST −K)

∣∣ST = K
]∣∣Ft]

= −rdCq +
(
rf − ρσSσV

)
Cq −

(
rf − ρσSσV

)
K
∂Cq
∂K

+
1

2
K2V0e

−rd(T−t)EQ
[
σ2
S

∣∣ST = K
]
EQ [δ (ST −K)| Ft]

= −rdCq +
(
rf − ρσSσV

)
Cq −

(
rf − ρσSσV

)
K
∂Cq
∂K

+
1

2
K2 ∂

2C

∂K2
EQ
[
σ2
S

∣∣ST = K
]
,

which follows that

∂Cq
∂T

+
(
rf − ρσSσV

)
K
∂Cq
∂K
− 1

2
K2∂

2Cq
∂K2

EQ
[
σ2
S

∣∣ST = K
]

−
(
rf − rd − ρσSσV

)
Cq = 0.

Regarding σS (St;K,T ) =
√
EQ [σ2

S|ST = K], we get the desired result.

4. The Dupire’s method and local volatility with stochastic
interest rates

As another way to the local volatility, we apply the method of B.
Dupire(1994) [3] which uses the Fokker-Planck equation (see Chapter 8
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of [4]) for the process (4) to get the equation of local volatility for the
quanto option price with constant foreign and domestic riskless rates
and extend this equation to the case of stochastic foreign and domestic
riskless rates. To begin with the case of constant rates, the following
theorem gives the equation for the price of a European quanto call op-
tion.

Theorem 4.1. With the assumptions of Theorem 3.1, Cq satisfies the
following equation:

(7)
∂Cq
∂T

+
(
rf − ρσSσV

)
K
∂Cq
∂K
− 1

2
σ2SK

2∂
2Cq
∂K2

−
(
rf − rd − ρσSσV

)
Cq = 0

for the local volatility σS = σS (St;K,T ).

Proof. Let p (t, St;T, ST ) be the risk-neutral probability density func-
tion of ST . Then we have the following equation:

Cq (St;K,T ) =

∫ ∞
−∞

V0e
−rd(T−t) max (ST −K, 0)p (t, St;T, ST )dST(8)

=

∫ ∞
K

V0e
−rd(T−t) (ST −K) p (t, St;T, ST )dST .

Since p (t, St;T, ST ) must satisfy the Fokker-Planck equation, we obtain

(9)
∂p

∂T
− 1

2

∂2

∂S2
T

(
σ2
SS

2
Tp
)

+
∂

∂ST

{(
rf − ρσSσV

)
STp

}
= 0.

Now, differentiating (8) with respect to K, it gives

∂Cq
∂K

= −
∫ ∞
K

V0e
−rd(T−t)p (t, St;T, ST )dST

and

∂2Cq
∂K2

= V0e
−rd(T−t)p (t, St;T,K) .
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Also, differentiating (8) with respect to T so that applying (9) and the
integration by parts, it gives

∂Cq
∂T

= −rdCq +

∫ ∞
K

V0e
−rd(T−t) (ST −K)

∂p

∂T
dST

= −rdCq +

∫ ∞
K

V0e
−rd(T−t) (ST −K)

×
[

1

2

∂2

∂S2
T

(
σ2SS

2
T p
)
− ∂

∂ST

{(
rf − ρσSσV

)
ST p

}]
dST

= −rdCq +
1

2
V0e
−rd(T−t)σ2SK

2p

+
(
rf − ρσSσV

)∫ ∞
K

V0e
−rd(T−t) (ST −K) pdST

+
(
rf − ρσSσV

)∫ ∞
K

V0e
−rd(T−t)KpdST

= −rdCq +
1

2
σ2SK

2∂
2Cq
∂K2

+
(
rf − ρσSσV

)
Cq −

(
rf − ρσSσV

)
K
∂Cq
∂K

.

Thus, the proof is complete.

We refer (7) to the Dupire equation for the price of a European quanto
call option. This also gives us the Dupire formula for the local volatility,
which is equally expressed by (5).

We now assume more general case that riskless rates are stochastic.
Then the risk-neutral dynamics of St in domestic currency can be written
as

(10) dSt =
{
rft − ρσS (t, St)σV

}
Stdt+ σS (t, St)StdB̃t,

where rft is the foreign riskless rate which follows some stochastic process.
We also assume that the domestic riskless rate rd = rdt in the previous
section also follows some stochastic process. The following theorem gives
the Dupire equation for the price of a European quanto call option.
However, to obtain the usable local volatility from the equation, we may
need some numerical procedure.

Theorem 4.2. Suppose that the asset price in domestic currency

is the stochastic process which follows (10). Let Cq

(
St, r

f
t , r

d
t ;K,T

)
be the price of a European quanto call option at time t in domes-
tic currency Y with foreign strike price K and maturity T , and let

p
(
t, St, r

f
t , r

d
t ;T, ST , r

f
T , r

d
T

)
be the risk-neutral joint probability density
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function of ST , rfT and rdT . Then Cq

(
St, r

f
t , r

d
t ;K,T

)
satisfies the fol-

lowing Dupire equation:

∂Cq
∂T

=
1

2
σ2
SK

2∂
2Cq
∂K2

−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
K

V0e
−z(T−t) {(x−K) z + y − ρσSσV }

× xp
(
t, St, r

f
t , r

d
t ;T, x, y, z

)
dxdydz

for the local volatility σS = σS

(
St, r

f
t , r

d
t ;K,T

)
.

Proof. As before, the price of a European quanto call option is

Cq

(
St, r

f
t , r

d
t ;K,T

)(11)

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
K

V0e
−z(T−t) (x−K) p

(
t, St, r

f
t , r

d
t ;T, x, y, z

)
dxdydz.

Now, differentiating (11) with respect to K, it gives

∂Cq
∂K

= −
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
K

V0e
−z(T−t)p

(
t, St, r

f
t , r

d
t ;T, x, y, z

)
dxdydz

and

∂2Cq
∂K2

=

∫ ∞
−∞

∫ ∞
−∞

V0e
−z(T−t)p

(
t, St, r

f
t , r

d
t ;T,K, y, z

)
dydz.

Also, differentiating (11) with respect to T so that applying the Fokker-

Planck equation for p
(
t, St, r

f
t , r

d
t ;T, ST , r

f
T , r

d
T

)
and the integration by
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parts, it gives

∂Cq
∂T

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
K

V0e
−z(T−t) (x−K)

(
−z +

∂p

∂T

)
dxdydz

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
K

V0e
−z(T−t) (x−K)

×
[
−z +

[
1

2

∂2

∂x2
(
σ2Sx

2p
)
− ∂

∂x
{(y − ρσSσV )xp}

]]
dxdydz

=

∫ ∞
−∞

∫ ∞
−∞

{
−
∫ ∞
K

V0ze
−z(T−t) (x−K) pdx

+
1

2
V0e
−z(T−t)σ2SK

2p+

∫ ∞
K

V0e
−z(T−t) (y − ρσSσV )xpdx

}
dydz

=
1

2
σ2SK

2∂
2Cq
∂K2

−
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
K

V0e
−z(T−t) {(x−K) z + y − ρσSσV }xpdxdydz.
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