DOI QR코드

DOI QR Code

A MULTIVARIATE JUMP DIFFUSION PROCESS FOR COUNTERPARTY RISK IN CDS RATES

  • Received : 2015.01.15
  • Accepted : 2015.03.02
  • Published : 2015.03.25

Abstract

We consider counterparty risk in CDS rates. To do so, we use a multivariate jump diffusion process for obligors' default intensity, where jumps (i.e. magnitude of contribution of primary events to default intensities) occur simultaneously and their sizes are dependent. For these simultaneous jumps and their sizes, a homogeneous Poisson process. We apply copula-dependent default intensities of multivariate Cox process to derive the joint Laplace transform that provides us with joint survival/default probability and other relevant joint probabilities. For that purpose, the piecewise deterministic Markov process (PDMP) theory developed in [7] and the martingale methodology in [6] are used. We compute survival/default probability using three copulas, which are Farlie-Gumbel-Morgenstern (FGM), Gaussian and Student-t copulas, with exponential marginal distributions. We then apply the results to calculate CDS rates assuming deterministic rate of interest and recovery rate. We also conduct sensitivity analysis for the CDS rates by changing the relevant parameters and provide their figures.

Keywords

References

  1. P. Bremaud, Point Processes and Queues: Martingale Dynamics, Springer-Verlag, New-York, 1981.
  2. D. Brigo and N. El-Bachir, An exact formula for default swaptions, pricing in the SSRJD stochastic intensity model, Mathematical Finance, 20(3), (2010), 365-382. https://doi.org/10.1111/j.1467-9965.2010.00401.x
  3. D.R. Cox, Some statistical methods connected with series of events, J. R. Stat. Soc. B, 17 (1955), 129-164.
  4. J. Cox, J. Ingersoll and S. Ross, A theory of the term structure of interest rates, Econometrica, 53(2), (1985), 385-407. https://doi.org/10.2307/1911242
  5. A. R. Das, The surprise element: Jumps in interest rates, Journal of Econometrics, 106, (2002), 27-65. https://doi.org/10.1016/S0304-4076(01)00085-9
  6. A. Dassios, and J. Jang, Pricing of catastrophe reinsurance & derivatives using the Cox process with shot noise intensity, Finance & Stochastics, 7(1), (2003), 73-95. https://doi.org/10.1007/s007800200079
  7. M. H. A. Davis, Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models, Journal of the Royal Statistical Society. Series B (Methodological) 46(3), (1984), 353-388.
  8. M. Davis and V. Lo, Modelling default correlation in bond portfolios, Working paper, Imperial College, London 2000.
  9. M. Davis and V. Lo, Infectious defaults, Quantitative Finance, 1, (2001), 381-387.
  10. D. Duffie and N. Garleanu, Risk and valuation of collateral debt obligations, Financial Analysts Journal, 51(1), (2001), 41-60.
  11. D. Duffie and K.J. Singleton, Simulating correlated defaults, Working Paper, Stanford University, 1999.
  12. R.M. Gaspar and T. Schmidt, Quadratic models for portfolio credit risk with shot-noise effects, SSE working paper No. 616, 2005.
  13. R.M. Gaspar and T. Schmidt, Term structure models with shot-noise effects, Advance Working Paper Series No. 3, ISEG Technical University of Lisbon, 2007.
  14. R.M. Gaspar and T. Schmidt, On the pricing of CDOs, In Credit Derivatives, G. Gregoriou and P. U. Ali, editors, Credit Derivatives, Chapter 11, McGraw-Hill, 2008.
  15. R.M. Gaspar and T. Schmidt, CDOs in the light of the current crisis In Financial Risks: New Developments in Structured Product & Credit Derivatives, Economica. 2010.
  16. K. Giesecke, Correlated default with incomplete information, Journal of Banking and Finance, 28, (2004), 1521-1545. https://doi.org/10.1016/S0378-4266(03)00129-8
  17. K. Giesecke, Default and information, Journal of Economic Dynamics and Control, 30(11), (2006), 2281-2303. https://doi.org/10.1016/j.jedc.2005.07.003
  18. K. Giesecke and S. Weber, Credit contagion and aggregate losses, Journal of Economic Dynamics and Control, 30(5), (2006), 741-767. https://doi.org/10.1016/j.jedc.2005.01.004
  19. J. Grandell, Doubly Stochastic Poisson Processes, Springer-Verlag, Berlin, 1976.
  20. F. Jamshidian, An exact bond option formula, Journal of Economic Dynamics and Control, 30(5), (1989), 2281-2303
  21. J. Jang, Jump diffusion processes and their applications in insurance and finance, Insurance: Mathematics and Economics, 41, (2007), 62-70 https://doi.org/10.1016/j.insmatheco.2006.09.006
  22. J. Jang, Copula-dependent collateral default intensity and its application to CDS rate,Working Paper, Sydney: Centre for Financial Risk, Macquarie University, (2008), Contract No.: 10-7.
  23. Jarrow, R. A. and Yu, F. (2001): Counterparty risk and the pricing of defaultable securities, Journal of Finance, 56(5), 555-576.
  24. J. F. Jouanin, G. Rapuch, G. Riboulet and T. Roncalli, Modelling dependence for credit derivatives with copulas, Working Paper, Groupe de Recherche Operationnelle, Credit Lyonnais, France, (2001).
  25. M. Kijima, Valuation of a credit swap of the basket type, Review of Derivatives Research, 4, (2000), 81-97. https://doi.org/10.1023/A:1009628513231
  26. S.G. Kou, Jump-Diffusion Models for Asset Pricing in Financial Engineering, In: Birge JR, Linetsky V, editors. Handbooks in Operations Research and Management Science. 1st ed. North-Holland: Elsevier; 2008. p. 73-116.
  27. D. X. Li, On default correlation: A copula function approach, Journal of Fixed Income, 9(4), (2000), 43-54. https://doi.org/10.3905/jfi.2000.319253
  28. Y-K. Ma, and J-H. Kim, Pricing the credit default swap rate for jump diffusion default intensity processes, Quantitative Finance, 10(8), (2010), 809-817. https://doi.org/10.1080/14697680903382768
  29. A. McNeil, R. Frey and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press, USA, 2005.
  30. A. Mortensen, Semi-analytical valuation of basket credit derivatives in intensity-based models, Journal of Derivatives, 13(4), (2006), 8-26. https://doi.org/10.3905/jod.2006.635417
  31. R.B. Nelsen, An Introduction to Copulas, Springer-Verlag, New York, 1999.
  32. Scherer, M., Schmid, L., T. Schmidt (2012): Shot noise driven multivariate default models, European Actuarial Journal, 2, (2012), 161-186. https://doi.org/10.1007/s13385-012-0059-z
  33. T. Schmidt, Coping with Copula, In: Birge JR, Linetsky V, editors. Bloomberg Professional Series. JohnWiley & Sons, UK, 2007.
  34. P.J. Schonbucher, Credit derivatives pricing models: Models, Pricing and Implementation, John Wiley & Sons, UK, 2003.
  35. P.J. Schonbucher and D. Schubert, Copula-dependent default risk in intensity models,Working Paper, Department of Statistics, Bonn University, 2001.
  36. P. Tankov and E. Votchkova, Jump diffusion models: The practitioner,s guide, Report, Banque et Marchs. 2009.
  37. F. Yu, Correlated defaults in intensity-based models, Mathematical Finance, 17(2), (2006), 155-173. https://doi.org/10.1111/j.1467-9965.2007.00298.x

Cited by

  1. Modeling the Dependency Structure of Integrated Intensity Processes vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0134992
  2. Hierarchical Markov Model in Life Insurance and Social Benefit Schemes vol.6, pp.3, 2018, https://doi.org/10.3390/risks6030063