DOI QR코드

DOI QR Code

Feature-Strengthened Gesture Recognition Model based on Dynamic Time Warping

Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델

  • 권혁태 (단국대학교 컴퓨터과학과) ;
  • 이석균 (단국대학교 소프트웨어학과)
  • Received : 2014.11.28
  • Accepted : 2015.02.13
  • Published : 2015.03.31

Abstract

As smart devices get popular, research on gesture recognition using their embedded-accelerometer draw attention. As Dynamic Time Warping(DTW), recently, has been used to perform gesture recognition on data sequence from accelerometer, in this paper we propose Feature-Strengthened Gesture Recognition(FsGr) Model which can improve the recognition success rate when DTW is used. FsGr model defines feature-strengthened parts of data sequences to similar gestures which might produce unsuccessful recognition, and performs additional DTW on them to improve the recognition rate. In training phase, FsGr model identifies sets of similar gestures, and analyze features of gestures per each set. During recognition phase, it makes additional recognition attempt based on the result of feature analysis to improve the recognition success rate, when the result of first recognition attempt belongs to a set of similar gestures. We present the performance result of FsGr model, by experimenting the recognition of lower case alphabets.

스마트 디바이스가 보편화되면서 이에 내장된 가속도 센서를 사용한 제스처의 인식에 관한 연구가 주목받고 있다. 최근 가속도 센서 데이터 시컨스를 통한 제스처 인식에 Dynamic Time Warping(DTW) 기법이 사용되는데, 본 논문에서는 DTW 사용 시 제스처의 인식률을 높이기 위한 특징 강조형 제스처 인식(FsGr) 모델을 제안한다. FsGr 모델은 잘못 인식될 가능성이 높은 유사 제스처들의 집합에 대해 특징이 강조되는 데이터 시컨스의 부분들을 정의하고 이들에 대해 추가적인 DTW를 실행하여 인식률을 높인다. FsGr 모델의 훈련 과정에서는 유사 제스처들의 집합들을 정의하고 유사 제스처들의 특징들을 분석한다. 인식 과정에서는 DTW를 사용한 1차 인식 시도의 결과 제스처가 유사 제스처 집합에 속한 경우, 특징 분석 결과를 기반으로 한 추가적인 인식을 시도하여 인식률을 높인다. 알파베트 소문자에 대한 인식 실험을 통해 FsGr 모델의 성능 평가 결과를 보인다.

Keywords

References

  1. R. Bellman, "Dynamic Programming," Princeton University Press, Princeton, NJ 1957.
  2. N. Gillian, R. Knapp, and S. o'Modhrain, "Recognition Of Multivariate Temporal Musical Gestures Using N-Dimensional Dynamic Time Warping," Proc. of the International Conference on New Interfaces for Musical Expression, pp.337-342, 2011.
  3. S. Cho, W. Bang, and J. Yang, "Two-stage Recognition of Raw Acceleration Signals for 3-D Gesture-Understanding Cell Phones," Proc. of the 10th International Workshop on Frontiers in Handwriting Recognition, 2006.
  4. E. Keogh, M. Pazzani, "Scaling up dynamic time warping for datamining applications," Proc. of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.285-289, 2000.
  5. M. Ko, B. West, S. Venkatesh, and M. Kumar, "Using dynamic time warping for online temporal fusion in multisensor systems," Information Fusion 9, pp.370-388 2008. https://doi.org/10.1016/j.inffus.2006.08.002
  6. J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, "uWave: Accelerometer-based personalized gesture recognition and its applications," Pervasive and Mobile Computing 5, pp.657-675, 2009. https://doi.org/10.1016/j.pmcj.2009.07.007
  7. M. Muller, Information Retrieval for Music and Motion, Springer, 2007.
  8. S. Kim, G. Park, S. Jeon, S. Yim, G. Han, and S. Choi, "HMM-based Motion Recognition with 3-D Acceleration Signal," KIISE Transactions on Computing Practices and Letters, Vol.15, No.3, pp.216-220, 2009.
  9. S. Nam, J. Kim, S. Heo, and I. Kim, "Smartphone Accelerometer-Based Gesture Recognition and its Robotic Application," KIPS Transactions on Software and Data Engineering, Vol.2, No.6, pp.395-402, Mar., 2013. https://doi.org/10.3745/KTSDE.2013.2.6.395

Cited by

  1. Feature-Strengthened Gesture Recognition Model Based on Dynamic Time Warping for Multi-Users vol.5, pp.10, 2016, https://doi.org/10.3745/KTSDE.2016.5.10.503