DOI QR코드

DOI QR Code

Effects of Water Soluble Potassium Silicate by Soil Drenching Application on Watermelon (Citrullus lanatus var. lanatus)

시설수박에 대한 수용성 규산칼륨 토양관주 효과

  • Kim, Young-Sang (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kang, Hyo-Jung (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kim, Tae-Il (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Jeong, Taek-Gu (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Han, Jong-Woo (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kim, Ik-Jei (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Nam, Sang-Young (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kim, Ki-In (Department of Horticultural Science Mokpo National University)
  • Received : 2015.08.24
  • Accepted : 2015.09.15
  • Published : 2015.09.30

Abstract

The objective of this study was to determine the effects of soluble potassium silicate by soil drenching application on watermelon growth, yield, and nutrient uptake. The potassium silicate rates were control (No potassium silicate), 1.63mM, 3.25mM, 6.50mM. The potassium silicate were treated 6 times (twice before fruit forming and 4 times after fruit forming per 7 day. Soil chemical properties, such as soil pH, EC, available phosphorus and silicate, exchangeable K, nitrate-N levels were increased after potassium silicate treatment, while the concentrations of soil organic matter, exchangeable Ca and Mg were similar to control. The growth characteristics of watermelon, such as stem diameter, fresh and dry weight of watermelon at harvest were thicker and heavier for increased potassium silicate treatment than the control, while number of node, and plant length were same for all treatments. With increased potassium silicate treatment, nutrient concentrations, such as P and K in the watermelon leaf at harvest were increased, N concentration in the leaf was decreased, and Ca and Mg concentrations in the leaf were same. Chlorophyll content was increased with increased potassium silicate application. The occurrence of powdery mildew was lower for the potassium silicate treatments than the control. Fresh watermelon weight for the potassium silicate treatments was 0.1 to 0.5kg per watermelon heavier than the control, sugar content was 0.5 to $0.6^{\circ}Brix$ higher than control, and merchantable watermelon was 2 to 4% increased compared to the control. These results suggest that potassium silicate application by soil drenching method in the greenhouse can improve watermelon nutrient uptake, merchantable watermelon and suppress the occurrence of powdery mildew.

시설재배지에서 수용성 규산칼륨 처리가 수박의 생육, 수량, 양분흡수 및 토양특성에 미치는 영향을 조사하기 위해 수용성 규산칼륨을 무처리, 1.63mM, 3.25mM, 6.50mM의 4수준을 두어 토양관주 처리하였으며, 처리시기는 착과전 2회와 착과후 4회로 총 6회를 7일 간격으로 처리하였다. 시험후 토양화학성은 수용성 규산처리에 따라 pH, EC 유효인산, 치환성 K, Ca, Mg, $NO_3-N$은 증가하였으며, 유기물 함량은 대조구와 비슷하였다. 수확기 수박 생육 특성 중 경경, 생중 및 건물중은 수용성 규산칼륨 처리에서 두껍고 무거웠으며, 만장과 절수는 유의적인 차이를 나타내지 않았다. 수박 수확기 잎에 함유되어 있는 무기성분 함량은 수용성 규산칼륨 수준이 높아짐에 따라 N은 감소하고 P와 K는 증가하였으나 Ca과 Mg는 차이가 없었다. 생육단계별 엽록소함량은 착과전에는 수용성 규산칼륨처리에 따른 차이가 없었으나 착과후 및 수확기로 갈수록 수용성 규산칼륨 수준이 높아짐에 따라 엽색도가 높아지는 경향을 보였다. 흰가루병 발생정도는 대조구에 비하여 수용성 규산칼륨 수준이 높을수록 발생정도가 낮았다. 수박의 과중은 수용성 규산칼륨 처리에 의해 0.1~0.5kg/개 무거워졌으며, 당도는 $0.5{\sim}0.6^{\circ}Brix$ 정도 높아졌고, 상품수량은 대조구에 비하여 2~4% 증수되었다. 이상의 결과 시설수박 재배지에 수용성 규산칼륨 처리는 양분흡수 증가, 수박 상품수량 증가 및 흰가루병 발생 억제로 시설 수박재배에 친환경적인 방법으로 안정생산에 활용할 수 있으리라 본다.

Keywords

References

  1. Adatia, M.D. and R.T. Bestford. 1986. The effect of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58:343-351. https://doi.org/10.1093/oxfordjournals.aob.a087212
  2. Ahn, B.K., S.G. Han, J.Y. Kim, K.C. Kim, D.Y. Ko, S.S. Jeong, and J.H. Lee. 2014. Influence of silicate fertilizer application on soil properties and red pepper productivity in plastic film house. Korean J. Environ. Agric. 33(4):254-261. https://doi.org/10.5338/KJEA.2014.33.4.254
  3. Aoki, M., and Ogawa, M. 1997. Influence of silicon on the blossom-end rot and growth of tomato, J. Sci. Soil Manure. 48:156-159.
  4. Belanger, R.R., P.A. Bowen, D.L. Ehert, and J.G. Menzies. 1995. Soluble silicon, Its role in crop and disease management of greenhouse crops, Plant Dis. 79:329-336. https://doi.org/10.1094/PD-79-0329
  5. Bowen, P.A., J.G. Menzies and D.L. Ehret. 1992. Soluble silicon inhibit powdery mildew development on grape leaves. J. Amer. Soc. Hort. Sci. 117:906-912.
  6. Burlo, F.I. Guijarro, A.A.C. Barrachina, and D. Vlaero. 1999. Arsenic species : Effects on and accmulation by tomato plants. J. Agric. Food Chem. 47:1247-1253. https://doi.org/10.1021/jf9806560
  7. Chang, K.W., J.H. Hong, J.E. Lee, and J.J. Lee. 2006. Effects of the granular silicate fertilizer (GSF) application on the rice growth and quality. Korean J. Soil Sci. Fert. Vol.39(3):151-156.
  8. Cho, H.J., H.Y. Choi, Y.W. Lee, Y.J. Lee, and J.B. Chung. 2004. Availability of silicate fertilizer and its effect on soil pH in upland soils. Korean J. Environ. Agric. 23:104-110. https://doi.org/10.5338/KJEA.2004.23.2.104
  9. Cho, I.C., S.H. Lee, and B.J. Cha. 1998. Effects of soluble silicon and several surfactants on the development of powdery mildew of cucumber, Korean J. Environ. Agric. 17:306-311.
  10. Cho, J.K. 2013. Growth characteristics of tomato applied with silicate and salicylate in the greenhouse. Ph. D. Kong-ju National University.
  11. Datnoff, L.E., K.W. Kenneth, and F.J. Correa-V. 2001. Silicon in agriculture. Elsevier Science, Amsterdam.
  12. Epstein, E. 1994. The anomaly of silicon in plant. Proc. Natl. Acad. Sci. USA 91:11-17. https://doi.org/10.1073/pnas.91.1.11
  13. Epstein, E. 1999. Silicon. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50:641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  14. Gascho, G.J. 2001. Silicon sources for agriculture. In: L.E. Datnoff, G. H. Snyder, and G.H. Korndorfer (eds.). Silicon in agriculture. Elsvier Science, Amsterdam. p.197-207.
  15. Guevel, M.H., J.G. Menzies, and R.R. Belanger. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eyr. J. Plant Pathol. 119:429-436. https://doi.org/10.1007/s10658-007-9181-1
  16. Joo, J.H., and Lee, S.B. 2011. Assessment of silicate fertilizers application affecting soil properties in paddy field, Korean J. Soil Sci. Fert. 44:1016-1022. https://doi.org/10.7745/KJSSF.2011.44.6.1016
  17. Keeping, M.G., and Meyer, J.H. 2006. Silicon-mediated resistance of sugarcane to Eldana saccharina Walker (Lepidoptera: Pyralidate): Effects of silicon source and cultivar, J. Appl. Entomol. 130:410-420. https://doi.org/10.1111/j.1439-0418.2006.01081.x
  18. Kim, Y.C, K.Y. Kim, K.W. Park, H.K. Yun, T.C. Seo, and S.G. Lee. 2002. Effect of granular silicate application on the growth and yield of tomato grown in perlite substrate, J. Korean Soc. Hort. Sci. 43:21-24.
  19. Lee, J.S., J.H., Park, and K.S. Han 2000. Effects of potassium silicate on growth, photosynthesis and inorganic ion absorption in cucumber hydroponics. J. Korean Soc. Hort. Sci. 41:480-484.
  20. Lee, J.S., and Yiem, M.S. 2000. Effect of soluble silicon on development of powdery mildew (Sphaerotheca fuliginea) in cucumber plants. Korean J. Pestic. Sci. 4:37-43.
  21. Lee, S.B. 2012. Effect of several silicate fertilizers on soil characteristics and crop growth. Kangwon National University graduate school. p 1.
  22. Lee, S.H., H.J. Cho, H.J. Shin, S.D. Shin, Park, B.J. Kim, and J.B. Chung. 2003. Effect of silicate fertilizer on oriental melon in plastic film house. Korean J. Soil Sci. Fert. 36:407-416.
  23. Lee, Y.B., and Kim, P.J. 2006. Effects of silicate fertilizer on increasing phosphate availability in salt accumulated soil during Chinese cabbage cultivation. Korean J. Soil Sci. Fert. 39:8-14.
  24. Liang, Y.J. Z. Zhu, G. Li, Y. Chu, J. Ding, and W. Sun. 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ. Expt. Bot. 64:286-394. https://doi.org/10.1016/j.envexpbot.2008.06.005
  25. Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stress. Soil Sci. Plant Nutr. 50:11-18. https://doi.org/10.1080/00380768.2004.10408447
  26. Marschner, H. 2003. Beneficial mineral elements. P. 405-435. In : H. Marschner (ed). Mineral nutrition of higher plant. 2nd ed. Academic Press, Amsterdam.
  27. Menzies. J.P. Bowen, D. Ehert, and A.D.M. Glass. 1992. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. J. Am. Soc. Hortic. Sci. 117:902-905.
  28. Miller, W.P., and Miller, D.M. 1987. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 18:1-15. https://doi.org/10.1080/00103628709367799
  29. Miyake, Y., and Takahashi, E. 1983. Effect of silicon on the growth of solution cultured cucumber plant. Soil Sci. Plant Nutr. 29:71-83. https://doi.org/10.1080/00380768.1983.10432407
  30. NAAS(National Academy of Agricultural Science). 2010. Methods of soil chemical analysis, Rural Development Administration, Korea. ISBN :978-89-480-0913-2 93520.
  31. Oh, W.K., J.Y. Kim, and S.B. Kim. 1987. Effects of urea, ammonium nitrate and calcium silicate on the absorption, translocation of potassium and yield of chinese cabbage. J. Korean Soc, Soil Sci. Fert. 20:337-340.
  32. Pei, Z.F., D.F. Ming, D. Liu, G.L., Wan, X.X. Geng, H.J. Gong, and W.J. Zhou. 2010. Silicon improves the tolerance to water deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J. Plant Growth Regul. 29:106-115. https://doi.org/10.1007/s00344-009-9120-9
  33. RDA(Rural Development Administration). 2003. Standard of analysis and survey for agricultural research. Rural Development Administration. Suwon. Korea.
  34. RDA(Rural Development Administration). 2010. Fertilization standard of crop plant. Rural Development Administration. Suwon. Korea.
  35. Ryu, N.H., M.Y. Choi, Y.J. Ryu, H.J. Cho, Y.S. Lee, Y.D. Lee, and J.B. Chung, 2003. Suppression of powdery mildew development in oriental melon by silicate fertilizer. Korean. J. Envrion. Agric. 22, 255-260. https://doi.org/10.5338/KJEA.2003.22.4.255
  36. Savant, N.K., G.H. Korndorfer, L.E. Datnoff, and G.H. Snyder. 1999. Silicon nutrition and sugarcane production : a review. J. plant Nutr. 22:1853-1903. https://doi.org/10.1080/01904169909365761
  37. Sherwood, R.T. and Nance, C.P. 1980. Resistance to fungal penetration in Gramineae. Phytopathol. 70:273-279. https://doi.org/10.1094/Phyto-70-273
  38. Sivanesan, I., Son, M.S., J.P. Lee, and B.R. Jeong. 2010. Effects of silicon on growth of Tagetes patula L. 'Boy Orange' and Yellow Boy seedlings cultured in an environment controlled chamber, Propagation Ornamental Plants. 10:136-140.
  39. Son, M.S., H.J. Oh, J.Y. Song, M.Y. Lim, Sivanesan, and B.R. Jeong. 2012. Effect of silicon source and application method on growth of kalanchoe Peperu. Kor. J. Hort. Sci. Technol. 30(3):250-255.
  40. Voogt, W. 1989. Komkommer : Silicium als mestof toedienen nog niet mogelijk in praktijk. (Cucumber: application of silicon as fertilizer not yet possible in commercial practice). Groenten Fruit. 44:34-35.
  41. Won, J.G., S.J. Kim, D.J. Ahn, Y.J. Seo, C.D. Choi, and S.C. Lee. 2008. Effect of silicate application on grain quality and storage characteristics in rice. Korean J. Crop. Sci. 53:31-36.
  42. Uhm. M.J., H.G. Noh, S.W. Chon, and Y.J. Song. 2012. Application effect of organic fertilizer and chemical fertilizer on the watermelon growth and soil chemical properties in greenhouse. Korean J. Environ. Agric. 31:1-8. https://doi.org/10.5338/KJEA.2012.31.1.1
  43. Zucczrini, P. 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol. Plant. 52:157-160. https://doi.org/10.1007/s10535-008-0034-3