DOI QR코드

DOI QR Code

온실의 적설하중 산정을 위한 노출계수의 비교 및 결정

Comparison and Decision of Exposure Coefficient for Calculation of Snow Load on Greenhouse Structure

  • 정승현 (경북대학교 농업토목공학과) ;
  • 윤재섭 (한국농어촌공사 경북지역본부) ;
  • 이종원 (경북대학교 농업과학기술연구소) ;
  • 이현우 (경북대학교 농업토목공학과)
  • Jung, Seung-Hyeon (Department of Agricultural Eng., Kyungpook National Univ.) ;
  • Yoon, Jae-Sub (Gyeongbuk Regional Head Office, Korea Rural Community Corp.) ;
  • Lee, Jong-Won (Institute Agricultural Science & Technology, Kyungpook National University) ;
  • Lee, Hyun-Woo (Department of Agricultural Eng., Kyungpook National Univ.)
  • 투고 : 2015.07.17
  • 심사 : 2015.09.13
  • 발행 : 2015.09.30

초록

본 연구에서는 적설하중 산정을 위한 노출계수를 결정하는데 필요한 기초자료를 제공하기 위하여 각국의 온실구조설계기준에서 제시된 노출계수들을 비교분석하였고 우리나라의 각 지역별 노출계수를 결정하고 결정방법에 대하여 개선방안을 분석하였으며 연구결과를 요약하면 다음과 같다. 각국의 노출계수 기준을 비교분석한 결과 노출계수에 영향을 미치는 주요인자는 노풍도, 풍속, 바람막이의 유무인 것으로 분석되었다. 또한 일본을 제외한 각국의 기준을 종합하면 노출계수는 3가지 단계로 구분되며 바람에 완전히 노출되고 바람이 센 지역의 노출계수는 0.8(0.9), 바람에 부분적으로 노출된 지역은 1.0(1.1), 바람막이가 조밀하게 설치된 지역은 1.2로 나타낼 수 있다. 따라서 온실의 적설하중 산정을 위한 노출계수는 적용의 용이성을 고려한다면 3단계로 구분하여 제시하는 것이 바람직할 것으로 판단된다. ISO 4355기준에 따라 우리나라 94개 지역에 대한 노출계수를 산정한 결과 대관령 (0.5)과 여수(0.6)를 제외한 모든 지역의 노출계수가 1.0과 0.8 두 가지로 대별되었다. 우리나라의 내륙지역이 해안지역에 비해 상대적으로 더 큰 강설 확률을 가지며 최대풍속이 $5m{\cdot}s^{-1}$ 이상인 일수가 더 작은 것으로 분석되었다. 우리나라의 노출계수는 3단계로 구분하여 해안 지역을 중심으로 한 바람이 강한 지역을 0.8로 하고 내륙지역은 1.0으로 하며 촘촘한 바람막이가 있는 경우는 일본을 제외한 각국에서 적용하고 있는 값인 1.2로 결정하는 것이 바람직할 것으로 판단되며, 임계풍속 $5.0m{\cdot}s^{-1}$ 이상 일 수에 따른 지역별 구체적인 노출계수는 추가적인 연구를 통해 결정할 필요가 있다.

To provide the data necessary to determine exposure coefficients used for calculating the snow load acting on a greenhouse, we compared the exposure coefficients in the greenhouse structure design standards for various countries. We determined the exposure coefficient for each region and tried to improve on the method used to decide it. Our results are as follows: After comparing the exposure coefficients in the standards of various countries, we could determine that the main factors affecting the exposure coefficient were terrain roughness, wind speed, and whether a windbreak was present. On comparing national standards, the exposure coefficients could be divided into three groups: exposure coefficients of 0.8(0.9) for areas with strong winds, 1.0(1.1) for partially exposed areas, and 1.2 for areas with dense windbreaks. After analyzing the exposure coefficients for 94 areas in South Korea according to the ISO4355 standard, all of the areas had two coefficients (1.0 and 0.8), except Daegwallyeong (0.5) and Yeosu (0.6), which had one coefficient each. In South Korea, the probability of snow is greater inland than in coastal areas and there are fewer days with a maximum wind velocity > $5m{\cdot}s^{-1}$ inland. When determining the exposure coefficients in South Korea, we can subdivide the country into three regions: coastal areas with strong winds have an exposure coefficient of 0.8; inland areas have a coefficient of 1.0; and areas with dense windbreaks have an exposure coefficient of 1.2. Further research that considers the number of days with a wind velocity > $5m{\cdot}s^{-1}$ as the threshold wind speed is needed before we can make specific recommendations for the exposure coefficient for different regions.

키워드

참고문헌

  1. Architectural Institute of Japan (AIJ). 2004. Recommendations for loads on buildings.
  2. Architectural Institute of Korea (AIK). 2009. Korean Building Code and Commentary (in Korean).
  3. Choi, M.G., S.W. Yun, H.T. Kim, S.Y. Lee and Y.C. Yoon. 2014a. Field survey on the maintenance status of greenhouses in Korea. Protected Horticulture and Plant Factory 23(2):148-157 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.2.148
  4. Choi, M.G., S.W. Yun, H.T. Kim, S.Y. Lee and Y.C. Yoon. 2014b. Current status on the greenhouse foundation. Journal of Agriculture & Life Science 48(3):251-260 (in Korean). https://doi.org/10.14397/jals.2014.48.3.251
  5. International Organization for Standardization (ISO). 1998. ISO 4355 Bases for design on structures - determination of snow loads on roofs. 2nd ed. Geneve: International Organization for Standardization
  6. Japan Greenhouse Horticulture Association (JGHA), 1997. Standard for structural safety of greenhouse. Tokyo: Japan Greenhouse Horticulture Association (in Japanese).
  7. Jung, S.H., H.W. Lee, J.W. Lee, W.H. Na and S.Y. Lee. 2014a. Comparison of Wind Pressure Calculation Formula for Greenhouse Structure Design in Some Nations Standard. Proceedings of the Korean Society for Bio-Environment Control Conference 23(1):189-190 (in Korean).
  8. Jung, S.H., H.W. Lee, J.W. Lee, W.H. Na and S.Y. Lee. 2014b. Comparison of snow loads calculation standards for greenhouse structure design in Some Nations. Proceedings of the Korean Society for Bio-Environment Control Conference 23(2):169-170 (in Korean).
  9. Jung, S.H., H.W. Lee, J.W. Lee and S.Y. Lee. 2015. Analysis of wind velocity profile for calculation of wind pressure on greenhouse. Protected Horticulture and Plant Factory, Accepted (in Korean).
  10. Kim, R.U., D.W. Kim, K.C. Ryu, K.S. Kwon, and I.B. Lee. 2014. Estimation of wind pressure coefficients on even-span greenhouse built in reclaimed land according to roof slope using wind tunnel. Protected Horticulture and Plant Factory. 23(4):269-280 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.4.269
  11. Kind, RJ. 1981. Handbook of snow: principles, processes, management and use. Snow drifting. Oxford: Pergamon Press. 338-59.
  12. Lee, B.G., S.W. Yun, M.K. Choi, S.Y. Lee, S.D. Moon, C. Yu and Y.C. Yoon. 2014. Uplift bearing capacity of spiral steel peg for the single span greenhouse. Protected Horticulture and Plant Factory. 23(2):109-115 (in Korean). https://doi.org/10.12791/KSBEC.2014.23.2.109
  13. Li, L. and Pomeroy, JW. 1997. Estimates of threshold wind speeds for snow transport using meteorological data. Journal of Applied Meteorology 36:205-13. https://doi.org/10.1175/1520-0450(1997)036<0205:EOTWSF>2.0.CO;2
  14. Mellor, M. 1965. Cold Regions Science and Engineering. US Army Material Command, Cold Regions Research & Engineering Laboratory. Part III, Section A3c, Blowing snow.
  15. Meloysund V., K.R. Liso, H.O. Hygen, K.V. Hoiseth and H.O. Hygen. 2007. Effects of wind exposure on roof snow loads. Building and Environment 42:3726-3736. https://doi.org/10.1016/j.buildenv.2006.09.005
  16. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 1999. Greenhouse structure design standards and explanations (in Korean).
  17. Ministry for Food, Agriculture, Forestry and Fisheries(MIFAFF), Rural Development Administration(RDA). 2010. Designated notice of standards to endure disaster for horticultural and special facilities (in Korean).
  18. Nam, S.W., and Y.S. Kim. 2009. Actual state of structures and environmental control facilities for tomato greenhouses in Chungnam region. Jour. Agri. Sci. 36(1):73-85 (in Korea).
  19. National Disaster Information Center. Retrieved from http://www.safekorea.go.kr
  20. National Greenhouse Manufactures Association (NGMA). 2004. Structural Design Manual. ed. NGMA, PA, USA.
  21. Netherlands Standardization Institut(NEN). 2004. Greenhouses : Design and construction - part1 : commercial production greenhouses
  22. Otstavnov, VA. and Rosenberg, LS. 1989. Consideration of wind effect in standardization of snow load. A multidisciplinary approach to snow engineering: first international engineering foundation, US Army Corps of Engineers Cold Regions 8387 89(6):256-63.
  23. Rural Development Corporation(RDC). 1995. Greenhouse structural requirements. ed. RDC, Uiwang, Korea (in Korean).
  24. Rural Development Adminstration(RDA). 2000. Agricultural disasters countermeasure and its technology. ed. RDA, Jeonju, Korea (in Korean).
  25. Rural Development Administration(RDA). 2005. Damage aspects and countermeasure of horticultural facilities by meteorological disasters. ed. RDA, Jeonju, Korea (in Korean).
  26. Rural Development Adminstration(RDA). 2007. A guide book for meteorological disasters reduction of agricultural facilities. ed. RDA, Jeonju, Korea (in Korean).
  27. Rural Development Administration(RDA). 2009. The workshop for Reduction countermeasure of meteorological disasters for horticultural and special facilities. ed. RDA, Jeonju, Korea (in Korean).
  28. Ryu, H.R., I.H. Yu, M.W. Cho, and Y.C. Um. 2009. Structural reinforcement methods and structural safety analysis for the elevated eaves height 1-2W type plastic greenhouse. J. Bio-Env. Cont. 18(3):192-199 (in Korean).
  29. Shu, W.M., M.K. Choi, Y.H. Bae, J.W. Lee, and Y.C. Yoon. 2008. Structural safety analysis of a modified 1-2W type greenhouse enhanced for culturing paprika. J. Bio-Env. Cont. 17(3):197-203 (in Korean).
  30. Yu, I.H., E.H. Lee, M.W. Cho, H.R. Ryu, and Y.C. Kim. 2012. Development of multi-span plastic greenhouse for tomato cultivation. J. Bio-Env. Cont. 21(4):428-436 (in Korean). https://doi.org/10.12791/KSBEC.2012.21.4.428