DOI QR코드

DOI QR Code

The Expression of Hsp90 and Ferritin Genes under Thermal Stress in the Sea Cucumber (Apostichopus japonicas)

Apostichopus japonicas (Echinodermata; Holothuroidea)에서 온도 스트레스에 의한 Hsp90 및 Ferritin 유전자의 발현

  • Kim, Chul Won (Department of Aquaculture, Korea National College of Agriculture and Fisheries) ;
  • Jin, Young Guk (Southwest Sea Fisheries Research Institute, NFRDI) ;
  • Kim, Tae Ik (Southwest Sea Fisheries Research Institute, NFRDI) ;
  • Jeong, Dal Sang (Department of Aquaculture, Korea National College of Agriculture and Fisheries) ;
  • Kang, Han Seung (MS BioLab)
  • Received : 2015.07.23
  • Accepted : 2015.12.09
  • Published : 2015.12.31

Abstract

The Apostichopus japonicus is an important species in some Asia countries including Korea, China and Japan. The purpose of the present study was to investigate the differential gene expression of heat shock protein90 (Hsp90) and ferritin as a biomarker for the thermal stress during water temperature rising in the sea cucumber, A. japonicus. The A. japonicus (1.4 g) was cultured in incubator of separate temperature ($15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$ and $30^{\circ}C$) for each 0, 3, 6, 12, 24, 48 hours. The mRNA expression levels of Hsp90 and ferritin were examined using RT-PCR assay. Results showed that, the expression of Hsp90 mRNA was not significantly changed at $15^{\circ}C$. The expression of Hsp90 mRNA was significantly increased at high temperature such as $20^{\circ}C$ and $25^{\circ}C$. Furthermore, Hsp90 mRNA was early increased at $25^{\circ}C$ than $20^{\circ}C$. The ferritin mRNA was similar expression pattern with Hsp90. But, Hsp90 mRNA was more sensitive than ferritin mRNA at high thermal stress. These results indicate that Hsp90 and ferritin mRNAs were involved in the temperature changes response and may be play an important role in mediating the thermal stress in A. japonicas.

Keywords

References

  1. Basu N, A Todgham, P Ackerman, M Bibeau, K Nakano, P Schulte and GK Iwama. 2002. Heat shock protein genes and their functional significance in fish. Gene 295:173-183. https://doi.org/10.1016/S0378-1119(02)00687-X
  2. Colinet H, SF Lee and A Hoffmann. 2010. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 277:174-185. https://doi.org/10.1111/j.1742-4658.2009.07470.x
  3. Dong YW, SL Dong and TT Ji. 2008. Effects of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture 275:329-334. https://doi.org/10.1016/j.aquaculture.2007.12.006
  4. Fangue NA, M Hofmeister and PM Schulte. 2006. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209:2859-2872. https://doi.org/10.1242/jeb.02260
  5. Feder ME and GE Hofmann. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  6. Gagnaire B, H Frouin, K Moreau, H Thomas-Guyon and T Renault. 2006. Effects of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish Shellfish Immunol. 20:536-547. https://doi.org/10.1016/j.fsi.2005.07.003
  7. Galea-Lauri J, AJ Richardson, DS Latchman and DR Katz. 1996. Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNF-alpha and cycloheximide: a possible role in immunopathology. J. Immunol. 157:4109-4118.
  8. Georgopoulos C and W Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9:601-634. https://doi.org/10.1146/annurev.cb.09.110193.003125
  9. Harrison PM and P Arosio. 1996. Ferritins: molecular properties, iron storage function and cellular regulation. BioChim. Biophys. Acta 1275:161-203. https://doi.org/10.1016/0005-2728(96)00022-9
  10. Heckathorn SA, CA Downs, TD Sharkey and JS Coleman. 1998. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 116:439-444. https://doi.org/10.1104/pp.116.1.439
  11. Imai J and I Yahara. 2000. Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Mol. Cell. Biol. 20:9262-9270. https://doi.org/10.1128/MCB.20.24.9262-9270.2000
  12. Jakob U, H Lilie, I Meyer and J Buchner. 1995. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. J. Biol. Chem. 270:7288-7294. https://doi.org/10.1074/jbc.270.13.7288
  13. Kakhlon O, Y Gruenbaum and ZI Cabantchik. 2001. Repression of the heavy ferritin chain increases the labile iron pool of human K562 cells. Biochem. J. 356:311-316. https://doi.org/10.1042/bj3560311
  14. Konijn AM, H Glickstein, B Vaisman, EG Meyron-Holtz, IN Slotki and ZI Cabantchik. 1999. The cellular labile iron pool and intracellular ferritin in K562 cells. Blood 94:2128-2134.
  15. Kregel KC. 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92:2177-2186. https://doi.org/10.1152/japplphysiol.01267.2001
  16. Li BQ, HS Yang, T Zhang and Y Zhou. 2002. Effects of temperature on respiration and excretion of sea cucumber Apostichopus japonicas. Oceanol. Limnol. Sin. 33:182-187.
  17. Li FX, YH Liu, BX Song, HL Sun, XL Zhang and BX Gu. 1996. Study on aestivating habit of sea cucumber Apostichopus japonicus Selenka. II. Ecological characteristic of aestivation. J. Fish. Sci. China. 3:49-57.
  18. Li P, J Zha and KY Zhou. 2009. Molecular cloning, mRNA expression, and characterization of HSP90 gene from Chinese mitten crab Eriocheir japonica sinensis. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 153:229-235. https://doi.org/10.1016/j.cbpb.2008.12.017
  19. Liao Y. 1997. FAUNA SINICA: phylum echinodermata, class holothuroidea Science Press, Beijing.
  20. Liu YH, FX Li, BX Song, HL Sun, XL Zhang and BX Gu. 1996. Study on aestivating habit of sea cucumber Apostichopus japonicus. I. Ecological characteristic of aestivation. J. Fish. Sci. China. 3:41-48.
  21. Logue J, P Tiku and AR Cossins. 1995. Heat injury and resistance adaptation in fish. J. Therm. Biol. 20:191-197. https://doi.org/10.1016/0306-4565(94)00056-O
  22. Morimoto RI. 1998. Regulation of the heat shock transcriptional responses: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788-3796. https://doi.org/10.1101/gad.12.24.3788
  23. Murtha JM and ET Keller. 2003. Characterization of the heat shock response in mature zebrafish (Danio rerio). Exp. Gerontol. 38:683-691. https://doi.org/10.1016/S0531-5565(03)00067-6
  24. Palmisano AN, JR Winton and WW Dickhoff. 2000. Tissue specific induction of hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Mar. Biotechnol. 2:329-338.
  25. Park K, J Park, J Kim and IS Kwak. 2010. Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 151:439-446. https://doi.org/10.1016/j.cbpc.2010.01.009
  26. Parsell D and S Lindquist. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27:437-496. https://doi.org/10.1146/annurev.ge.27.120193.002253
  27. Picard V, F Renaudie, C Porcher, MW Hentze, B Grandchamp and C Beaumont. 1996. Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution. Blood 87:2057-2064.
  28. Picard V, S Epsztejn, P Santambrogio, ZI Cabantchik and C Beaumont. 1998. Role of ferritin in the control of the labile iron pool in murine erythroleukemia cells. J. Biol. Chem. 273:15382-15386. https://doi.org/10.1074/jbc.273.25.15382
  29. Queitsch C, SW Hong, E Vierling and S Lindquist. 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479-492. https://doi.org/10.1105/tpc.12.4.479
  30. Richter K and J Buchner. 2001. Hsp90: chaperoning signal transduction. J. Cell. Physiol. 188:281-290. https://doi.org/10.1002/jcp.1131
  31. Sathiyaa R, T Campbell and MM Vijayan. 2001. Cortisol modulates hsp90 mRNA expression in primary cultures of trout hepatocytes. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 129:679-685. https://doi.org/10.1016/S1096-4959(01)00373-6
  32. Soetaert A, LN Moens, K Van der Ven, K Van Leemput, B Naudts, R Blust and WM De Coen. 2006. Molecular impact of propiconazole on Daphnia magna using a reproduction-related cDNA array. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. 142:66-76. https://doi.org/10.1016/j.cbpc.2005.10.009
  33. Song L, L Wu, D Ni, Y Chang, W Xu and K Xing. 2006. The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress. Fish Shellfish Immunol. 21:335-345. https://doi.org/10.1016/j.fsi.2005.12.011
  34. Theil EC. 1987. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56:289-315. https://doi.org/10.1146/annurev.bi.56.070187.001445
  35. Tsuji Y, H Ayaki, SP Whitman, CS Morrow, SV Torti and FM Torti. 2000. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol. Cell. Biol. 20:5818-5827. https://doi.org/10.1128/MCB.20.16.5818-5827.2000
  36. Wang FY, HS Yang, F Gao and GB Liu. 2008. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 151:491-498. https://doi.org/10.1016/j.cbpa.2008.06.024
  37. Wu LT and KH Chu. 2008. Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis: evidence for its role in the regulation of vitellogenin synthesis. Mol. Reprod. Dev. 75:952-959. https://doi.org/10.1002/mrd.20817
  38. Xu D, L Sun, S Liu, L Zhang and H Yang. 2014. Polymorphisms of heat shock protein 90 (Hsp 90) in the sea cucumber Apostichopus japonicas and their association with heat-resistance. Fish Shellfish Immunol. 41:428-436. https://doi.org/10.1016/j.fsi.2014.09.025
  39. Xu Q and Y Qin. 2012. Molecular cloning of heat shock protein 60 (PtHSP60) from Portunus trituberculatus and its expression response to salinity stress. Cell Stress Chaperone. 17:589-601. https://doi.org/10.1007/s12192-012-0334-6
  40. Yang HS, Y Zhou, T Zhang, XT Yuan, XX Li, Y Liu and FS Zhang. 2006. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol. 330:505-510. https://doi.org/10.1016/j.jembe.2005.09.010
  41. You L, X Ning, F Liu, J Zhao, Q Wang and H Wu. 2013. The response profiles of HSPA12A and TCTP from Mytilus galloprovincialis to pathogen and cadmium challenge. Fish Shellfish Immunol. 35:343-350. https://doi.org/10.1016/j.fsi.2013.04.021
  42. Zhang P, Y Lu, C Li, X Su, Z Wang, C Jin, Y Li and T Li. 2013. Identification of differential expressed proteins and characterization their mRNA expression in thermally stressed Apostichopus japonicas. Comp. Biochem. Physiol. Part D Genomics Proteomics 8:194-200. https://doi.org/10.1016/j.cbd.2013.05.001
  43. Zhao H, H Yang, H Zhao, M Chen and T Wang. 2011. The molecular characterization and expression of heat shock protein 90 (Hsp90) and 26 (Hsp26) cDNAs in sea cucumber (Apostichopus japonicas). Cell Stress Chaperone. 16:481-493. https://doi.org/10.1007/s12192-011-0260-z