DOI QR코드

DOI QR Code

Diversity of ampicillin resistant bacteria in domestic streams

국내 하천에 분포하는 ampicillin 내성균의 다양성

  • Go, Eun Byeul (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, Chonbuk National University) ;
  • Chung, In-Young (Chemicals Research Division, Environmental Health Research Department, National Institute of Environmental Research Complex) ;
  • Kim, Hyuk (Chemicals Research Division, Environmental Health Research Department, National Institute of Environmental Research Complex) ;
  • Seok, Kwang-Seol (Chemicals Research Division, Environmental Health Research Department, National Institute of Environmental Research Complex) ;
  • Kim, Byeori (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, Chonbuk National University) ;
  • Yoo, Yong-Jae (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, Chonbuk National University) ;
  • Jang, Yejin (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, Chonbuk National University) ;
  • Chae, Jong-Chan (Division of Biotechnology and Advanced Institute of Environmental and Bioscience, Chonbuk National University)
  • 고은별 (전북대학교 생명공학부 및 환경생명신기술연구소) ;
  • 정인영 (국립환경과학원 화학물질연구과) ;
  • 김혁 (국립환경과학원 화학물질연구과) ;
  • 석광설 (국립환경과학원 화학물질연구과) ;
  • 김벼리 (전북대학교 생명공학부 및 환경생명신기술연구소) ;
  • 유용재 (전북대학교 생명공학부 및 환경생명신기술연구소) ;
  • 장예진 (전북대학교 생명공학부 및 환경생명신기술연구소) ;
  • 채종찬 (전북대학교 생명공학부 및 환경생명신기술연구소)
  • Received : 2015.12.15
  • Accepted : 2015.12.18
  • Published : 2015.12.31

Abstract

The widespread emergence of antibiotic resistant microorganisms in clinics and natural environments has attracted public concern. Especially, microorganisms inhabiting natural environment is considered as a source responsible for increasing the abundance of antibiotic resistant genes in ecosystem. In this study, the diversity of culturable bacteria resistant to ampicillin was investigated with water samples collected from seven locations in Korea. The genera belonging to Aeromonas and Acidovorax were dominant among the isolated 498 strains. The 66% of isolates showed multi-drug resistance against more than six antibiotics among tested fourteen ones and isolates resistant to seven antibiotics were the most prevalent with 19.7% abundance. Using the antibiotics susceptibility results, the intrinsic resistance profile was suggested for the most dominant genera, Aeromonas, Acidovorax, Pseudomonas, and Elizabethkingia.

임상과 자연환경에서 발견되는 항생제내성균의 문제는 보건학적 관심의 대상이 되고 있으며 환경 중의 미생물은 항생제 내성유전자 확산의 한 요인으로 판단되고 있다. 본 연구에서는 국내 하천 7지점으로부터 분리한 배양성 ampicillin 내성균의 다양성을 조사하였다. 분리된 498종의 세균들 중에서 Aeromonas와 Acidovorax 속의 내성균 분포가 가장 높았으며, 66%의 분리균들이 조사된 14종의 항생제 중 6종 이상의 항생제에 내성을 나타내었다. 그리고 7종의 항생제에 내성을 보이는 비율이 19.7%로 가장 높았다. 또한 항생제감수성 조사 결과를 바탕으로, 분포율이 높았던 Aeromonas, Acidovorax, Pseudomonas, Elizabethkingia 속의 내성균에 대한 자연내성 특징을 파악하였다.

Keywords

References

  1. Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  2. Gullberg, E., Cao, S., Berg, O.G., Ilback, C., Sandegren, L., Hughes, D., and Andersson, D.I. 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158. https://doi.org/10.1371/journal.ppat.1002158
  3. Heuer, H., Schmitt, H., and Smalla, K. 2011. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14, 236-243. https://doi.org/10.1016/j.mib.2011.04.009
  4. Hur, J., Jawale, C., and Lee, J.H. 2012. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Res. Int. 45, 819-830. https://doi.org/10.1016/j.foodres.2011.05.014
  5. Kim, H.Y., Chung, S.Y., Choi, S.H., Lee, J.S., Choi, I.S., Cho, M.J., Shin, M.S., Song, J.S., Choi, J.C., Park, H.O., et al. 2010. Monitoring of veterinary drug residues in foods produced in Korea. Korean J. Food Sci. Technol. 42, 653-663.
  6. Kwon, H.K., Lee, J.H., and Kim, J.G. 2012. A study on the distribution of antibiotic resistant bacteria in domesticated animal feces. J. Environ. Health Sci. 38, 142-150.
  7. Lee, K. 2011. Trend of bacterial resistance for the past 50 years in Korea and future perspectives - Gram-negative bacteria. Infect. Chemother. 43, 458-467. https://doi.org/10.3947/ic.2011.43.6.458
  8. Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J.M., and Zhang, T. 2015. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9, 2490-2502. https://doi.org/10.1038/ismej.2015.59
  9. Livermore, D.M. 2012. Fourteen years in resistance. Int. J. Antimicrob. Agents 39, 283-294. https://doi.org/10.1016/j.ijantimicag.2011.12.012
  10. Oh, H.K. and Park, J.H. 2009. Characteristics of antibiotic resistant bacteria in urban sewage and river. J. Kor. Soc. Environ. Eng. 31, 232-239.
  11. Su, H.C., Pan, C.G., Ying, G.G., Zhao, J.L., Zhou, L.J., Liu, Y.S., Tao, R., Zhang, R.Q., and He, L.Y. 2014. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. Sci. Total Environ. 490, 708-714. https://doi.org/10.1016/j.scitotenv.2014.05.060
  12. Tan, B., Ng, C., Nshimyimana, J.P., Loh, L.L., Gin, K.Y., and Thompson, J.R. 2015. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front. Microbiol. 6, 1027.
  13. Tang, S.S., Apisarnthanarak, A., and Hsu, L.Y. 2014. Mechanisms of ${\beta}$-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv. Drug Deliv. Rev. 78, 3-13. https://doi.org/10.1016/j.addr.2014.08.003
  14. Vos, M., Hesselman, M.C., Te Beek, T.A., van Passel, M.W., and Eyre-Walker, A. 2015. Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol. 23, 598-605. https://doi.org/10.1016/j.tim.2015.07.006
  15. Yoon, J. 2014. Vancomycin resistance of Staphylococcus aureus in Korean primary hospitals. J. Bacteriol. Virol. 44, 305-310. https://doi.org/10.4167/jbv.2014.44.4.305