DOI QR코드

DOI QR Code

제주 조간대로부터 단백질 가수분해효소를 생산하는 세균의 분리 및 동정

Isolation and identification of protease-producing bacteria from the intertidal zone in Jeju Island, Korea

  • 문영건 (제주대학교 해양생명과학대학 수산의생명과학부) ;
  • 수브라마니안 다라니다란 (제주대학교 해양생명과학대학 수산의생명과학부) ;
  • 김동휘 (제주대학교 해양생명과학대학 수산의생명과학부) ;
  • 박소현 (제주대학교 해양생명과학대학 수산의생명과학부) ;
  • 허문수 (제주대학교 해양생명과학대학 수산의생명과학부)
  • Moon, Young-Gun (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Life Sciences, Jeju National University) ;
  • Dharaneedharan, Subramanian (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Life Sciences, Jeju National University) ;
  • Kim, Dong-Hwi (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Life Sciences, Jeju National University) ;
  • Park, So-Hyun (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Life Sciences, Jeju National University) ;
  • Heo, Moon Soo (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Life Sciences, Jeju National University)
  • 투고 : 2015.11.04
  • 심사 : 2015.12.24
  • 발행 : 2015.12.31

초록

단백질가수분해효소를 생산하는 11개의 세균들은 유기 생물체의 외부 표면 서식하며, inorganic materials는 제주도 조간대로부터 수집되었다. 시료들은 냉동 상태로 실험실로 옮겨졌으며, 멸균 해수와 1% skim milk가 들어가 있는 Zobell plates에서 배양시켰다. 다음 clear zone이 나타난 11개의 균주들은 단백질분해효소를 생성하는 세균으로서 선택되었으며, 각각의 균주들은 16S rDNA을 기반으로 동정하였다. 분석결과, Psedoalteromonas속 해양 세균 JJM125, JJM129, YG47과 YG49, Microbulbifer속 JJM122, Vibrio속 YG51, YG52, YG62, YG63, Firmicutes문과 Bacillaceae강에 속하는 JJM129, YG65로 나타났다. 따라서, 본 연구에서는 단백질분해가수효소를 생성하는 세균들을 다양한 생명 공학 응용프로그램과 함께 새로운 다양성의 개발 및 이용이 가능할 것이다.

Eleven protease-producing bacteria were isolated from the organisms' external shells and the inorganic materials collected from intertidal zone of Jeju Island, Republic of Korea. The samples were diluted serially, inoculated on Zobell agar plates with 1% skim milk and incubated at $20^{\circ}C$. Clear zone forming colonies were selected as protease-producing bacteria and each strain was identified based on the phylogenetic analysis with their 16S rDNA sequences. Strains JJM125, JJM129, YG47 and YG49 belong to the marine bacterial genus Pseudoalteromonas; strain JJM122 belong to the genus Microbulbifer; strains YG51, YG52, YG62 and YG63 belong to the genus Vibrio; and strain YG65 belong to genus Bacillus. Hence, the present study suggests that these protease producing bacteria could be further used to develop new varieties of protease with various biotechnological applications.

키워드

참고문헌

  1. Alfredsson, G.A., Gudmundsson, H.M., Xiang, J.Y., and Kristjansson, M.M. 1995. Subtilisin-like serine proteases from psychrophilic marine bacteria. J. Mar. Biotechnol. 3, 71-72.
  2. Banik, R.M., and Prakash, M. 2004. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol. Res. 159, 135-140. https://doi.org/10.1016/j.micres.2004.01.002
  3. Bowman, J.P. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5, 220-241. https://doi.org/10.3390/md504220
  4. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph.D. Thesis, Univ. Newcastle, Newcastle upon Tyne, UK.
  5. Ellaiah, P., Adinarayana, K., Rajyalaxmi, P., and Srinivasulu, B. 2003. Optimization of process parameters for alkaline protease production under solid state fermentation by alkalophilic Bacillus sp. Asian J. Microbiol. Biotechnol. Environ. Sci. 5, 49-54.
  6. Felsenstein, J. 1993. PHYLIP (Phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, WA, USA.
  7. Ferrari, E., Jarnagin, A.S., and Schmidt, B.F. 1993. Commercial production of extracellular enzymes. Bacillus subtilis and other Gram-positive bacteria, pp. 917-938. American Society for Microbiology Washington, USA.
  8. Gauthier, G., Gauthier, M., and Christen, R. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45, 755-761. https://doi.org/10.1099/00207713-45-4-755
  9. Irwin, J.A., Alfredsson, G.A., Lanzetti, A.J., Gudmundsson, H.M., and Engel, P.C. 2001. Purification and characterization of a serine peptidase from the marine psychrophile strain PA-43. FEMS Microbiol. Lett. 201, 285-290. https://doi.org/10.1111/j.1574-6968.2001.tb10770.x
  10. Ivanova, E.P., Romanenko, L.A., Matte, M.H., Matte, G.R., Lysenko, A.M., Simidu, U., Kita-Tsukamoto, K., Sawabe, T., Vysotskii, M.V., Frolova, G.M., et al. 2001. Retrieval of the species Alteromonas tetraodonis Simidu et al., 1990 as Pseudoalteromonas tetraodonis comb. nov. and emendation of description. Int. J. Syst. Evol. Microbiol. 51, 1071-1078. https://doi.org/10.1099/00207713-51-3-1071
  11. Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules. Mammalian Protein Metabolism, pp. 21-132. In Munro, H.N. (ed.), Academic Press, New York, USA.
  12. Kembhavi, A.A., Kulkarni, A., and Pant, A. 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM no. 64. Appl. Biochem. Biotechnol. 38, 83-92. https://doi.org/10.1007/BF02916414
  13. Kocher, G.S. and Mishra, S. 2009. Immobilization of Bacillus circulans MTCC 7906 for enhanced production of alkaline protease under batch and packed bed fermentation conditions. Internet. J. Microbiol. 7, 2.
  14. Kumar, C.G. and Hiroshi, T. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol. Adv. 17, 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  15. Lee, S.O., Kato, J., Nakashima, K., Kuroda, A., Ikeda, T., Takiguchi, N., and Ohtake, H. 2002. Cloning and characterization of extracellular metal protease gene of the algicidal marine bacterium Pseudoalteromonas sp. strain A28. Biosci. Biotechnol. Biochem. 66, 1366-1369. https://doi.org/10.1271/bbb.66.1366
  16. Lee, Y.K., Kim, H.W., Cho, K.H., Kang, S.H., Lee, H.K., and Kim, Y. 2004. Phylogenetic analysis of culturable arctic bacteria. Ocean Polar Res. 26, 51-58. https://doi.org/10.4217/OPR.2004.26.1.051
  17. Lee, K.H., Lee, P.M., Siaw, Y.S., and Morihara, K. 1993. Kinetics of aspartame precursor synthesis catalysed by Pseudomonas aeruginosa elastase. J. Chem. Technol. Biotechnol. 56, 375-381.
  18. Marcello, A., Loregian, A., De Filippis, V., Fontana, A., Hirst, T.R., and Palu, G. 1996. Identification and characterization of an extracellular protease activity produced by the marine Vibrio sp. 60. FEMS Microbiol. Lett. 136, 39-44. https://doi.org/10.1111/j.1574-6968.1996.tb08022.x
  19. Miyamoto, K., Nukui, E., Hirose, M., Nagai, F., Sato, T., Inamori, Y., and Tsujibo, H. 2002. A metalloprotease (MprIII) involved in the chitinolytic system of a marine bacterium, Alteromonas sp. strain O-7. Appl. Environ. Microbiol. 68, 5563-5570. https://doi.org/10.1128/AEM.68.11.5563-5570.2002
  20. Nakamura, L.K., Roberts, M.S., and Cohan, F.M. 1999. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int. J. Syst. Bacteriol. 49, 1211-1215. https://doi.org/10.1099/00207713-49-3-1211
  21. Nascimento, W.C.A. and Martins, M.L.L. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz. J. Microbiol. 35, 1-2. https://doi.org/10.1590/S1517-83822004000100001
  22. Prasanna Kumar, C., Akbar John, B., Ajmal Khan, S., Lyla, P.S., Kamaruzzaman, B.Y., and Jalal, K.C.A. 2013. Cultivable marine bacterial isolates from a sponge Hyattella cribriformis. J. Biol. Sci. 13, 26-32. https://doi.org/10.3923/jbs.2013.26.32
  23. Rao, M.B., Tanksale, A.M., Ghatge, M.S., and Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635.
  24. Romanenko, L.A., Zhukova, N.V., Lysenko, A.M., Mikhailov, V.V., and Stackebrandt, E. 2003. Assignment of Alteromonas marinoglutinosa NCIMB 1770 to Pseudoalteromonas mariniglutinosa sp. nov., nom. rev., comb. nov. Int. J. Syst. Evol. Microbiol. 53, 1105-1109. https://doi.org/10.1099/ijs.0.02564-0
  25. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  26. Shumi, W., Hossain, T., and Anwar, M.N. 2004. Proteolytic activity of a bacterial isolate Bacillus fastidiosus. J. Biol. Sci. 4, 370-374. https://doi.org/10.3923/jbs.2004.370.374
  27. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  28. Vazquez, S.C., Hernandez, E., and Cormack, W.P.M. 2008. Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96-47 strain. Rev. Argent. Microbiol. 40, 63-71.
  29. World Enzymes Market, Market research report. January 2014. Freedonia, 338pages. http://www.reportlinker.com/p0747897-summary/World-Enzymes-Industry.html.
  30. Yoon, J.H., Kim, I.G., Kang, K.H., Oh, T.K., and Park, Y.H. 2003. Bacillus marisflavi sp. nov., and Bacillus aquimaris sp. nov., isolated from seawater of a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 53, 1297-1303. https://doi.org/10.1099/ijs.0.02365-0