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I. INTRODUCTION 
 

Public key cryptography methods such as RSA [1], 

elliptic curve cryptography (ECC) [2], and pairing [3] 

involve computation-intensive arithmetic operations; in 

particular, multiplication accounts for most of the execution 

time of microprocessors. Several technologies have been 

proposed to reduce the execution time and computation cost 

of multiplication operations by decreasing the number of 

memory accesses, i.e., the number of clock cycles. 

A row-wise method called ‘operand scanning’ is used for 

short looped programs. This method loads all operands in a 

row. The alternative ‘Comba’ is a common schoolbook 

method that is also known as ‘product scanning.’ This method 

computes all partial products in a column [4]. ‘Hybrid 

scanning’ combines the useful features of ‘operand scanning’ 

and ‘product scanning.’ By adjusting the row and column 

widths, we can reduce the number of operand accesses and 

result updates. This method has an advantage over a 

microprocessor equipped with many general-purpose registers 

[5]. ‘Operand caching,’ which was proposed recently in [6], 

significantly reduces the number of load operations, which 

are regarded as expensive operations, via the caching of 

operands. However, this method does not provide full 

operand caching when changing the row of partial products. 

Recently, a novel method caches the required operands from 

the initial partial products to the final partial products. 

However, there is still room for further improvement in 

performance. 

In this paper, we propose a novel efficient memory access 
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Abstract 

Multiprecision multiplication is the most expensive operation in public key-based cryptography. Therefore, many 

multiplication methods have been studied intensively for several decades. In Workshop on Cryptographic Hardware and 

Embedded Systems 2011 (CHES2011), a novel multiplication method called ‘operand caching’ was proposed. This method 

reduces the number of required load instructions by caching the operands. However, it does not provide full operand caching 

when changing the row of partial products. To overcome this problem, a novel method, that is, ‘consecutive operand caching’ 

was proposed in Workshop on Information Security Applications 2012 (WISA2012). It divides a multiplication structure into 

partial products and reconstructs them to share common operands between previous and next partial products. However, there 

is still room for improvement; therefore, we propose a finely designed operand-caching mode to minimize useless memory 

accesses when the first row is changed. Finally, we reduce the number of memory access instructions and boost the speed of 

the overall multiprecision multiplication for public key cryptography.  
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design to minimize the number of operands and inter-

mediate results accesses when the first row is changed. 

Finally, the number of required load/store instructions is 

reduced by 5.8%. 

The remainder of this paper is organized as follows: In 

Section II, we describe different multiprecision multiplication 

techniques, and in Section III, we revisit the operand-

caching method and then, present the optimal memory 

access method. In Section IV, we describe the performance 

evaluation in terms of memory accesses and clock cycles. 

Finally, Section V concludes the paper. 

 

II. MULTIPRECISION MULTIPLICATION AND 
SQUARING 
In this section, we introduce various multiprecision 

multiplication techniques, including ‘operand scanning,’ 

‘product scanning,’ ‘hybrid scanning,’ and ‘operand 

caching.’ Each method has unique features for reducing the 

number of load and store instructions. In particular, 

‘operand caching’ reduces the number of memory accesses 

by caching operands to the registers. However, after the 

calculation of partial row products, no common operands 

exist. Therefore, operands should be reloaded for the next 

row computation. To overcome this problem, we present an 

advanced operand-caching method that ensures operand 

caching throughout the processes. As a result, the number of 

required load instructions decreases. 

To describe the multiprecision multiplication method, we 

use the following notations: let A and B be two m-bit 

operands that are multiple-word arrays. Each operand is 

written as follows: A = (A[n – 1], ..., A[2], A[1], A[0]) and B 

= (B[n – 1], ..., B[2], B[1], B[0]). The division of operand 

size (m) by word size (w) represents the number of elements 

(n) in the operand array. The multiplication result is twice as 

large as the operand C = (C[2n – 1], ..., C[2], C[1], C[0]). 

For the sake of clarity, we describe the method by using a 

multiplication structure and a rhombus form, as shown in 

Fig. 1. Each point represents a multiplication A[i]×B[j]. The 

rightmost corner of the rhombus represents the lowest 

indices (i, j = 0), whereas the leftmost corner denotes the 

highest indices (i, j = n – 1). The lowermost side represents 

result indices C[k], which range from the rightmost corner 

(k = 0) to the leftmost corner (k = 2n – 1).  

A. Operand-Scanning Method 

This method consists of two parts, i.e., inner and outer 

loops. In the inner loop, operand A[i] holds a value and 

computes the partial product with all multiple values of the 

multiplicand B[j] (j = 0, ..., (n – 1)). In the outer loop, the 

index of operand A[i] increases by the word size, and then, 

the inner loop is executed. 

Fig. 1(a) shows the multiprecision multiplication technique, 

which is called ‘operand scanning.’ The arrows indicate the 

order of computation, and the computations are performed 

from the rightmost corner to the leftmost corner. In each row, 

load instructions are executed 2n times for loading the 

multiplicand result, and the store instructions are executed n 

times for storing the result of the partial product. The 

number of memory accesses ranges from n
2
 + 3n to 3n

2
 + 2n, 

which is determined by the number of available general-

purpose registers for caching intermediate results. 

B. Product-Scanning Method 

This method computes all partial products in the same 

column by using multiplication and addition [4]. Because 

each partial product in the column is computed and then 

accumulated, registers are not needed for intermediate 

results. The results are stored once, and the stored results are 

not reloaded because all computations have already been 

completed. To perform multiplication, three registers for 

accumulation and two registers for the multiplicand, i.e., a 

total of five registers, are required. When the number of 

registers increases to more than five, the remaining registers 

can be used for caching operands. 

Fig. 1(b) shows the multiprecision multiplication technique, 

which is called ‘product scanning.’ The arrows direct from 

the top of the rhombus to the bottom, which means that the 

partial products are computed in the same column. The 

partial products are computed from right to left. For 

computation, load instructions are executed 2n
2
 times for 

loading the operands A[i] and B[j] (0 ≤ i, j ≤ (n – 1)) and 

store instructions are executed 2n times for storing the 

results C[k] (0 ≤ k ≤ (2n – 1)). Therefore, the number of 

memory accesses is 2n
2
 +2n. 

C. Hybrid-Scanning Method 

This method combines the useful features of ‘operand 

scanning’ and ‘product scanning’ [5]. Multiplication is 

performed on a block scale by using ‘product scanning.’ The 

number of rows within the block is defined as d, and the 

inner block partial products follow the ‘operand scanning’ 

rule. Therefore, this method reduces the number of load 

instructions by sharing the operands within the block. The 

number of rows increases with an increase in the number of 

available registers. Therefore, the number of memory 

accesses can be reduced by maximizing the number of 

shared operands. 

Fig. 1(c) shows the multiprecision multiplication technique, 

which is called the ‘hybrid’ method, for the case of d = 4. 

The computation order is from block 1 to block 4. After 

computing block 2, the next computation is block 3. In the  
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Fig. 1. Multiprecision multiplication techniques. (a) Operand scanning. 

(b) Product scanning [4]. (c) Hybrid scanning [5]. (d) Operand caching [6]. 

 

 

transition, there are no common operands between block 2 

and block 3. Therefore, all operands need to be reloaded 

from memory. The total number of memory accesses is 

2 ⌈
𝑛2

𝑑
⌉ + 2𝑛, which is determined by the number of rows in 

block d. 

D. Operand-Caching Method 

This method follows ‘product scanning,’ but it divides the 

calculation into several row sections [6]. By reordering the 

sequence of the inner and outer row sections, the previously 

loaded operands in the working registers are reused for 

computing the next partial products. A few store instructions 

are added, but the number of required load instructions is 

reduced. The number of row sections is given by 𝑟 = ⌊
𝑛

𝑒
⌋, 

and e denotes the number of words used to cache a digit in 

the operand.  

Fig. 1(d) shows the multiprecision multiplication technique, 

which is called ‘operand caching’ in the case of e = 3. Given 

n = 8, the number of row sections is 𝑟 = ⌊
8

3
⌋ = 2. The  

remaining section (𝑏𝑖𝑛𝑖𝑡) is computed first, and the main 

algorithm parts r0 and r1 are computed subsequently. In a 

row, at parts 2, 3, 4, and 5, operands are cached and reused. 

For example, between part 2 and part 3 in 𝑟0, operands A[i] 

are used for both parts (i = 3, 4, 5). The remaining parts 

have the same features. Therefore, the number of required 

operand load instructions is reduced. However, between part 

4 of 𝑟0 and part 1 of 𝑟1, there is no common operand. The 

operand load should be executed for computing the next 

partial products. The required number of memory accesses  

for the load and store instructions is 
2𝑛2

𝑒
 and 

𝑛2

𝑒
+ 𝑛 , 

respectively. 
 

III. CONSECUTIVE OPERAND-CACHING 
METHOD 

In this section, we introduce consecutive operand-caching 

multiprecision multiplication [7]. Because this method is 

based on ‘operand caching,’ it can perform multiplication 

with a reduced number of memory accesses for operand 

load instructions by using caching operands. However, the 

previous method has to reload operands whenever a row is 

changed, which generates an unnecessary overhead. 

To overcome these shortcomings, the method divides the 

rows and re-scheduled the multiplication sequences. Thus, 

they found a contact point among rows that share the 

common operands for partial products. Therefore, they can 

cache the operands by sharing the operands when a row is 

changed. A detailed example is shown in Fig. 2. 

A. Structure of Consecutive Operand Caching 

The size of the caching operand e and the number of 

elements n are set to 2 and 8, respectively. The value e is 

determined by the number of working registers in the 

platform. The number of rows is r = 4, following the 

notation 𝑟 = ⌊
𝑛

𝑒
⌋. Given the number of working registers w, 

the value is w = 3 + 2e. Three working registers are used for 

accumulating the intermediate results obtained from the 

partial products. 

 

 

Fig. 2. Consecutive operand-caching method [7]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Fig. 3. Rhombus form of the proposed method (a–i) represents e = 2–10. 

 
(f) 

 
(g) 

 
(h) 

 
(i) 
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The algorithm is divided into three parts. The 

initialization block 𝑏𝑡𝑜𝑝 is the top of the rhombus and the 

remaining rows are divided into two parts, 𝑏𝑏𝑜𝑡𝑡𝑜𝑚  and 

𝑏𝑚𝑖𝑑𝑑𝑙𝑒. The 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 part is located at the bottom of the 

rhombus. The remaining rows, 𝑏𝑚𝑖𝑑𝑑𝑙𝑒, are divided into two 

parts on the basis of the following condition. If ⌊
𝑛

𝑒
⌋ =

𝑛

𝑒
 is 

true, 𝑏𝑚𝑖𝑑𝑑𝑙𝑒 is not divided; otherwise, 𝑏𝑚𝑖𝑑𝑑𝑙𝑒 is divided 

into the 𝑏𝑚𝑖𝑑𝑑𝑙𝑒 and 𝑏𝑙𝑎𝑠𝑡 parts. The 𝑏𝑙𝑎𝑠𝑡 part is the last 

sequence of the rows that have a different operand size from 

the other rows because the size of operands A in the last part, 

n – re, is smaller than e. An example of 𝑏𝑙𝑎𝑠𝑡 is shown in 

Fig. 3(b, e, f, g, and h). All the partial products are 

computed from right to left, and the detailed process is 

described as follows. 

B. Top of Rhombus 𝒃𝒕𝒐𝒑 

The block located at the top of the rhombus executes 

‘product scanning’ using operands of size (n – re). Operands 

A[6,7] and B[0,1] are used for the 𝑏𝑡𝑜𝑝 process, which is 

shown in Fig. 3. In the computation of the partial products, 

the number of caching operands is smaller than the number 

of required operands e. Therefore, the operand reload 

process does not occur. If ⌊
𝑛

𝑒
⌋ =

𝑛

𝑒
 is true, the 𝑏𝑡𝑜𝑝 process 

is skipped. 

C. Row Processing 

The row parts compute the overlapping store and load 

instructions between the bottom and the upper rows. 𝑟1 is 

located over 𝑟0; hence, memory addresses storing the 

intermediate results C[k] (2 ≤ k ≤ 11) are accessed twice to 

update the previous results. Throughout the computations, 

operands are consecutively cached. When operand B[j] is 

loaded for the partial products in the rows, operand A[i] is 

maintained and vice versa. Whenever the row is changed, 

operand A[i] is still maintained for the next partial product 

of the row. Therefore, the number of load instructions is 

significantly reduced. 

 

D. Bottom Rows 𝒃𝒃𝒐𝒕𝒕𝒐𝒎 

The block located at the bottom of the rhombus can reuse 

caching operands B[0] and B[1] from 𝑏𝑡𝑜𝑝. First, operands 

A[i] (i = 0, 1) are loaded as caching operands, and then, 

partial products are computed with operands B[j] (j = 0, ..., 

7). When partial products with caching operands A[i] are 

completed, the next sequence of operands A[i] (i = 2, 3) is 

loaded and the partial products are computed using e, the 

size of the caching operand. 

E. Middle Rows 𝒃𝒎𝒊𝒅𝒅𝒍𝒆 

The block located between 𝑏𝑡𝑜𝑝  and 𝑏𝑏𝑜𝑡𝑡𝑜𝑚  can use 

caching operands A[i] from the previous row block. The 

partial products are computed with operands B[j]. The range 

of j increases for the remaining partial products in a row. In 

the second row (𝑟1 ), the range of is 0 ≤ 𝑗 ≤ 5 . After 

operands B[4] and B[5] are cached, the next sequence of 

operands A[i] (i = 4, 5) is loaded and the partial products are 

computed using e. Finally, the remaining partial products, 

with operands A[i] on the left side of the rhombus, are 

computed. 

F. End Rows 𝒃𝒍𝒂𝒔𝒕 

The 𝑏𝑙𝑎𝑠𝑡  part occurs when the condition is ⌊
𝑛

𝑒
⌋ ≠

𝑛

𝑒
. 

Most processes are equal to 𝑏𝑚𝑖𝑑𝑑𝑙𝑒, but in the last part, the 

computation of partial products using operands A[i] (re ≤ i 

< n) with B[j] (n – re ≤ j < n) is different. Because the 

remaining operands A[i] are smaller than the caching 

operand e, the partial products are computed with the 

narrower width of operands than in the case of 𝑏𝑚𝑖𝑑𝑑𝑙𝑒. 

G. Consecutive Operand Caching with 
Common Operands 

In this section, we will describe the features of common 

operands for consecutive operand caching. The process is 

computed in the following order: (a), (b), (c), and (d), as 

shown in Fig. 4. Firstly, in process (a), 𝑏𝑖𝑛𝑖𝑡 is computed 

with A[7], A[8], B[0], and B[1]. After the 𝑏𝑖𝑛𝑖𝑡 

computations, previously loaded operands B[0] and B[1] are 

maintained and used for the first row computation because 

the operands are common between initial section and first 

row. In process (b), operands A[0] and A[1] are maintained 

and used for the computation of the bottom of 𝑟0, loading 

operand B in an ascending order. After these computations, 

in process (c), the remaining 𝑟0 is computed by caching 

operands B[6] and B[7]. After these operations, the row is 

changed from row0 to row1. In this case, we still have 

common operands A[2] and A[3]. The remaining parts can 

also be computed with this procedure. Therefore, we can 

keep these operands throughout the process.  

H. Full Operand-Caching Multiplication 

Earlier, we discussed that the operand-caching method 

highly optimizes the number of memory accesses by finely 

caching operands. However, we found that the method has 

room for performance improvement in the case of 

(𝑛 − 𝑟𝑒 ≠ 0) where the operand size, cached operand, and 

the number of rows are denoted by n, e, and r, respectively. 
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This is because previous works missed two things. First, 

operands of the top block can be cached on the basis of the 

size of the cached operand (e) during operand caching. 

Second, the number of intermediate memory accesses in the 

bottom block can be reduced by adjusting the size of the 

structure in consecutive operand caching. 

In the following section, we present two cases on the 

basis of the operand size (n) and the cached operand size 

(e) because the consecutive operand-caching method has 

an inefficient structure when the value (n – re) is smaller 

than (e). 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Consecutive operand caching with common operands. (a), (b), 

(c), and (d) describe the order of computation. 

 

 
 

Fig. 5. Full operand-caching method in case 1. 

 

 

Fig. 6. Normal consecutive operand-caching method in case 2. 

 

In Fig. 4, at row r2, partial products of A[6], A[7], and 

B[2]–B[7] are calculated. In this case, the value (n – re) and 

the value (e) are the same, and operand caching is efficiently 

conducted. However, if (n – re) is smaller than (e), this 

process is inefficient because the size of operand caching is 

down to (n – re) and partial products are calculated 

according to a narrow long tail-shaped computation order. 

With this insight, we set specific equations for selecting an 

appropriate multiplication method depending on the operand 

size (n) and the caching operand size (e).  

 

- Case 1: 𝟎 < 𝒏 − 𝒓𝒆 ≤ ⌊
𝒆

𝟐
⌋ 

Case 1 is depicted in Fig. 5, where (n), (e), and (r) are 14, 

4, and 3, respectively, and this meets the condition of case 1 

(0 < 14 − 4 × 3 ≤ ⌊
4

2
⌋). The process starts from the top of 

the rhombus form 𝑏𝑡𝑜𝑝. In the process, operands including 

A[12], A[13] and B[0], B[1] are loaded. In the first row 𝑟1, 

operands including B[0] and B[1] are already loaded into 

registers from the previous process and we can reuse these 

operands. After row 𝑟1, operands including A[10]–A[13] 

and B[2]–B[5] are cached. The number of cached operands 

is four; therefore, each of the four registers for operands A 

and B can maintain four variables. In the second row 𝑟0, 

operands including B[2] and B[3] are re-used. Finally, 

compared with the previous results, in this case, we can 

decrease the number of memory accesses by up to the size 

of the cached operands. 
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- Case 2: ⌊
𝒆

𝟐
⌋ < 𝒏 − 𝒓𝒆 ≤ 𝒆 

Case 2 is depicted in Figs. 6 and 7 where (n), (e), and (r) 

are 15, 4, and 3, respectively, and this meets the condition of 

case 2 (⌊
4

2
⌋ < 15 − 4 × 3 ≤ 4). Fig. 6 illustrates normal 

consecutive operand caching. The computation order is 𝑏𝑡𝑜𝑝, 

𝑏𝑏𝑜𝑡𝑡𝑜𝑚 , 𝑟0 , and 𝑟1 . At the end of 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 , operands 

including A[4]–A[7] and B[11]–B[14] are cached. In the 

next row 𝑟0, operands including A[4]–A[7] and B[0]–B[3] 

are used. The operands including A[4]–A[7] are cached 

from the previous session; thus, we can re-use these 

operands. After the updating process, the intermediate 

results are calculated by re-accessing the memory. This 

process seems to be flawless. However, we have found that 

the intermediate result access can be optimized to the size of 

the cached operands. In Fig. 6, at 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 , intermediate 

results from C[4] to C[22] are saved and then reloaded in 

the following row 𝑟0. At the end of 𝑏𝑏𝑜𝑡𝑡𝑜𝑚, we calculated 

results including C[19]–C[22] by using the size of the 

cached operand (e = 4). In Fig. 7, we illustrate the proposed 

optimized operand-caching method. The general process is 

the same as that explained previously, but we chose the size 

of the bottom row as 3 (i.e., n – re = 15 – (3 × 4)) and this 

leads to saving results from C[4]–C[21] and loading results 

including C[4]–C[21]. Finally, the number of memory 

accesses is decreased with an increase in the number of 

operand-caching operations. In row 𝑟0, operands including 

A[4]–A[6] are reused and A[7] is loaded once and fully used 

throughout the process 𝑟0. This feature guarantees a certain 

number of operand-caching operations while decreasing the 

number of intermediate result accesses. The reduced number 

of memory accesses is 2 × (𝑒 − (𝑛 − 𝑟𝑒)). 

 

IV. RESULTS 

In this section, we analyze the complexity of memory 

accesses, which are expensive instructions in the practical 

implementations of multiprecision multiplication. To show 

performance enhancement, we implemented methods on a 

representative 8-bit AVR microprocessor. 

A. Memory Access 

Since memory access is the most time-consuming 

operation, we calculated the number of memory accesses. 

The number of load and store instructions in the operand-

caching method is calculated as follows: the notation p 

denotes the index of the row for the partial product. 

 

4(𝑛 − 𝑟𝑒) + 4 ∑ (𝑝𝑒 + 𝑛 − 𝑟𝑒) − 2𝑛 = 2𝑛 + 4𝑟𝑛 − 2𝑒𝑟2 − 2𝑒𝑟𝑟
𝑝=1 . (1) 

2(𝑛 − 𝑟𝑒) + 2 ∑ (𝑝𝑒 + 𝑛 − 𝑟𝑒) = 2𝑛 + 2𝑟𝑛 − 𝑒𝑟2 − 𝑒𝑟𝑟
𝑝=1 .  (2) 

 
Fig. 7. Full operand-caching method in case 2. 

 

 

The consecutive operand-caching method is evaluated 

under the condition ⌊𝑛/𝑒⌋ ≠ 𝑛/𝑒. This case is previously 

considered an inefficient part due to the effect of the long-

tail problem, but in this paper, we improved this drawback 

by introducing novel structures. Eqs. (3) and (4) express the 

costs of the load and store instructions for the consecutive 

operand-caching method, respectively. 

 

2(𝑛 − 𝑟𝑒) + (𝑟 − 1)(𝑛 + 𝑒) + (𝑒 + 𝑟𝑒) + 2 × (𝑛 − 𝑟𝑒) + 

(𝑟 − 1)(𝑛 + 𝑒) = 2𝑛 − 𝑟𝑒 + 2𝑟𝑛 − 𝑒.       (3) 

 

2 × (𝑛 − 𝑟𝑒) + (𝑟 − 1)(𝑛 + 2𝑒) + (2𝑛 − 𝑟𝑒 + 𝑒) 

= 3𝑛 − 𝑟𝑒 + 𝑟𝑛 − 𝑒.                      (4) 

 

The full operand-caching method uses relatively few 

memory accesses including the load and store operations. In 

the case of normal operand caching, we can decrease the 

number of operand accesses by e = (n – re), and the load and 

store operations are generalized in Eqs. (5) and (6). In the 

case of consecutive operand caching, the number of load 

and store operations is decreased by e = (n – re). Finally, the 

load and store operations are derived in Eqs. (7) and (8), 

respectively. In Tables 1 and 2, the number of memory 

accesses is described. The number of memory accesses is 

reduced by 5.8% using the proposed method. 

 

4(𝑛 − 𝑟𝑒) + 4 ∑(𝑝𝑒 + 𝑛 − 𝑟𝑒) − 2𝑛 − 𝑒

𝑟

𝑝=1

 

= 2𝑛 − 2𝑟𝑒 − 2𝑟2𝑒 + 4𝑟𝑛 − 𝑒.            (5) 

2(𝑛 − 𝑟𝑒) + 2 ∑ (𝑝𝑒 + 𝑛 − 𝑟𝑒) = 2𝑛 − 𝑟𝑒 − 𝑟2𝑒 + 2𝑟𝑛𝑟
𝑝=1 . (6) 

2(𝑛 − 𝑟𝑒) + (𝑟 − 1)(𝑛 + 𝑒) + (𝑒 + 𝑟𝑒) + 2 × (𝑛 − 𝑟𝑒) + 

(𝑟 − 1)(𝑛 + 𝑒) − (𝑒 − 𝑛 + 𝑟𝑒) = 3𝑛 − 2𝑟𝑒 + 2𝑟𝑛 − 2𝑒.  (7) 

2 × (𝑛 − 𝑟𝑒) + (𝑟 − 1)(𝑛 + 2𝑒) + (2𝑛 − 𝑟𝑒 + 𝑒) − (𝑒 − 𝑛 + 𝑟𝑒) 

= 4𝑛 − 2𝑟𝑒 + 𝑟𝑛 − 2𝑒.              (8) 

B. Evaluation on 8-Bit Platform AVR 

We evaluated the performance of the proposed method by 

using MICAz mote, which is equipped with an ATmega128 
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8-bit processor clocked at 7.3728 MHz. It has a 128-kB 

EEPROM chip and a 4-kB RAM chip [8]. The ATmega128 

processor has an RISC architecture with 32 registers. 

Among them, six registers (r26–r31) serve as special 

pointers for indirect addressing. The remaining 26 registers 

are available for arithmetic operations. One arithmetic 

instruction incurs one clock cycle, and a memory instruction 

or memory addressing or 8-bit multiplication incurs two 

processing cycles. We used six registers for the operand and 

result pointer, two for the multiplication result, four for 

accumulating the intermediate result, and the remaining 

registers for caching operands. 

 

 

Table 1. Comparison of the number of load and store instructions for 

multiprecision multiplication 

Method 
Memory access operations 

Load Store Total 

OC [6] 
2𝑛 − 2𝑟𝑒

− 2𝑟2𝑒 + 4𝑟𝑛 

2𝑛 − 𝑟𝑒 − 𝑟2𝑒

+ 2𝑟𝑛 

4𝑛 − 3𝑟𝑒

− 3𝑟2𝑒 + 6𝑟𝑛 

COC 
2𝑛 − 𝑟𝑒 + 2𝑟𝑚

− 𝑒 

3𝑛 − 𝑟𝑒 + 𝑟𝑛

− 𝑒 

5𝑛 − 2𝑟𝑒 + 3𝑟𝑛 

− 2𝑒 

FCOC 

(case 1) 

2𝑛 − 2𝑟𝑒

− 2𝑟2𝑒 + 4𝑟𝑛

− 𝑒 

2𝑛 − 𝑟𝑒 − 𝑟2𝑒

+ 2𝑟𝑛 

4𝑛 − 3𝑟𝑒

− 3𝑟2𝑒 + 6𝑟𝑛

− 𝑒 

FCOC 

(case 2) 

3𝑛 − 2𝑟𝑒

+ 2𝑟𝑛 − 2𝑒 

4𝑛 − 2𝑟𝑒 + 𝑟𝑛

− 2𝑒 

7𝑛 − 4𝑟𝑒

+ 3𝑟𝑛 − 4𝑒 

OC: operand caching, COC: consecutive-operand caching, FCOC: fully 

consecutive operand caching. 
 

 

Table 2. Multiprecision multiplication memory access result obtained 

using various methods with different operand sizes 

Method 
Operand size 

160 192 224 256 

OC [6] 140 204 268 344 

COC [7] 130 204 248 368 

FCOC 130 192 244 334 

OC: operand caching, COC: consecutive-operand caching, FCOC: fully 

consecutive operand caching. 

 

 

Table 3. Multiprecision multiplication clock cycle result obtained using 

various methods with different operand size 

Method 
Operand size 

160 192 224 256 

OC [6] 2,395 3,469 N/A 6,123 

COC [7] 2,356 3,464 4,644 6,180 

FCOC 2,339 3,407 4,594 6,027 

Enhancement against 

OC & COC 

2.34 1.78 N/A 1.56 

0.72 1.64 1.07 2.47 

OC: operand caching, COC: consecutive-operand caching, FCOC: fully 

consecutive operand caching. 

Table 4. Instruction counts for the proposed multiplication on the 

ATmega128 (excluding PUSH/POP) 

Operand Load Store Mul Others Total 

160 70 60 400 1,279 2,339 

192 116 85 576 1,859 3,407 

224 142 109 784 2,524 4,594 

256 200 136 1,024 3,308 6,027 

 
 

In the case of multiplication, the proposed method 

requires a small number of memory accesses, which can 

reduce the required operand access. To optimize perfor-

mance, we further applied the carry-once method, which 

updates two intermediate results at once [9], which in turn 

reduces an addition operation in every intermediate update. 

In Table 3, we compared the proposed method including 

consecutive operand caching and fully consecutive operand 

caching with operand caching. In four representative cases, 

we achieved performance enhancement by 1.63% and 2.34% 

for consecutive operand caching and fully consecutive 

operand caching as compared to operand caching, 

respectively. The detailed instruction information is available 

in Table 4. 

C. Limitation of the Proposed Method 

RSA and ECC are widely used in public key cryptography. 

Compared to ECC, RSA requires at least 1024- or 2048-bit 

multiplication. The operand size is highly related to 

performance. When it comes to embedded processors, 2048-

bit RSA is extremely slow. Recently, Liu and Großschädl 

[10] proposed a hybrid finely integrated product scanning 

method that achieved 220,596 clock cycles for 1024-bit 

multiplication. The problem was that the focus was only on 

fast implementation, and therefore, all the program codes 

were written in unrolled way. However, in the case of 1024-

bit multiplication, the code size was about 100 kB. 

Furthermore, the proposed method cannot be used for all 

microprocessors. The MSP430 and SIMD processors have 

different hardware multipliers and instruction sets; therefore, 

a straightforward implementation of the proposed method 

does not guarantee high performance [9, 11]. In this case, 

we should carefully re-design the multiplication method to 

fully exploit the advantages of both specific hardware 

multipliers and multiplication structures. 

 

V. CONCLUSION 

The previous best-known method reduced the number of 

load instructions by using caching operands. However, there 

is a little room for further performance improvement, which 

could be brought about by reducing the number of load 
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instructions. In this study, we attempted to achieve high 

performance enhancement by introducing a fully operand 

cached version of the previous design. The evaluation 

results showed an improvement in the performance of this 

method, brought about by an analysis of the total number of 

load and store instructions. For more practical results, we 

implemented the method using a microprocessor and 

evaluated the clock cycles for the operation. This algorithm 

could be applied to other platforms and various public key 

cryptography methods. 
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