
 27

I. INTRODUCTION

Public key cryptography methods such as RSA [1],

elliptic curve cryptography (ECC) [2], and pairing [3]

involve computation-intensive arithmetic operations; in

particular, multiplication accounts for most of the execution

time of microprocessors. Several technologies have been

proposed to reduce the execution time and computation cost

of multiplication operations by decreasing the number of

memory accesses, i.e., the number of clock cycles.

A row-wise method called ‘operand scanning’ is used for

short looped programs. This method loads all operands in a

row. The alternative ‘Comba’ is a common schoolbook

method that is also known as ‘product scanning.’ This method

computes all partial products in a column [4]. ‘Hybrid

scanning’ combines the useful features of ‘operand scanning’

and ‘product scanning.’ By adjusting the row and column

widths, we can reduce the number of operand accesses and

result updates. This method has an advantage over a

microprocessor equipped with many general-purpose registers

[5]. ‘Operand caching,’ which was proposed recently in [6],

significantly reduces the number of load operations, which

are regarded as expensive operations, via the caching of

operands. However, this method does not provide full

operand caching when changing the row of partial products.

Recently, a novel method caches the required operands from

the initial partial products to the final partial products.

However, there is still room for further improvement in

performance.

In this paper, we propose a novel efficient memory access

Received 14 November 2014, Revised 04 December 2014, Accepted 31 December 2014
*Corresponding Author Howon Kim (E-mail: howonkim@pusan.ac.kr, Tel: +82-51-510-3927)
Department of Computer Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Korea.

 http://dx.doi.org/10.6109/jicce.2015.13.1.027 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 13(1): 27-35, Mar. 2015 Regular paper

Consecutive Operand-Caching Method for Multiprecision
Multiplication, Revisited

Hwajeong Seo and Howon Kim*, Member, KIICE

Department of Computer Engineering, Pusan National University, Busan 609-735, Korea

Abstract

Multiprecision multiplication is the most expensive operation in public key-based cryptography. Therefore, many

multiplication methods have been studied intensively for several decades. In Workshop on Cryptographic Hardware and

Embedded Systems 2011 (CHES2011), a novel multiplication method called ‘operand caching’ was proposed. This method

reduces the number of required load instructions by caching the operands. However, it does not provide full operand caching

when changing the row of partial products. To overcome this problem, a novel method, that is, ‘consecutive operand caching’

was proposed in Workshop on Information Security Applications 2012 (WISA2012). It divides a multiplication structure into

partial products and reconstructs them to share common operands between previous and next partial products. However, there

is still room for improvement; therefore, we propose a finely designed operand-caching mode to minimize useless memory

accesses when the first row is changed. Finally, we reduce the number of memory access instructions and boost the speed of

the overall multiprecision multiplication for public key cryptography.

Index Terms: Multiplication, Public key cryptography

Open Access

J. lnf. Commun. Converg. Eng. 13(1): 27-35, Mar. 2015

http://dx.doi.org/10.6109/jicce.2015.13.1.027 28

design to minimize the number of operands and inter-

mediate results accesses when the first row is changed.

Finally, the number of required load/store instructions is

reduced by 5.8%.

The remainder of this paper is organized as follows: In

Section II, we describe different multiprecision multiplication

techniques, and in Section III, we revisit the operand-

caching method and then, present the optimal memory

access method. In Section IV, we describe the performance

evaluation in terms of memory accesses and clock cycles.

Finally, Section V concludes the paper.

II. MULTIPRECISION MULTIPLICATION AND
SQUARING
In this section, we introduce various multiprecision

multiplication techniques, including ‘operand scanning,’

‘product scanning,’ ‘hybrid scanning,’ and ‘operand

caching.’ Each method has unique features for reducing the

number of load and store instructions. In particular,

‘operand caching’ reduces the number of memory accesses

by caching operands to the registers. However, after the

calculation of partial row products, no common operands

exist. Therefore, operands should be reloaded for the next

row computation. To overcome this problem, we present an

advanced operand-caching method that ensures operand

caching throughout the processes. As a result, the number of

required load instructions decreases.

To describe the multiprecision multiplication method, we

use the following notations: let A and B be two m-bit

operands that are multiple-word arrays. Each operand is

written as follows: A = (A[n – 1], ..., A[2], A[1], A[0]) and B

= (B[n – 1], ..., B[2], B[1], B[0]). The division of operand

size (m) by word size (w) represents the number of elements

(n) in the operand array. The multiplication result is twice as

large as the operand C = (C[2n – 1], ..., C[2], C[1], C[0]).

For the sake of clarity, we describe the method by using a

multiplication structure and a rhombus form, as shown in

Fig. 1. Each point represents a multiplication A[i]×B[j]. The

rightmost corner of the rhombus represents the lowest

indices (i, j = 0), whereas the leftmost corner denotes the

highest indices (i, j = n – 1). The lowermost side represents

result indices C[k], which range from the rightmost corner

(k = 0) to the leftmost corner (k = 2n – 1).

A. Operand-Scanning Method

This method consists of two parts, i.e., inner and outer

loops. In the inner loop, operand A[i] holds a value and

computes the partial product with all multiple values of the

multiplicand B[j] (j = 0, ..., (n – 1)). In the outer loop, the

index of operand A[i] increases by the word size, and then,

the inner loop is executed.

Fig. 1(a) shows the multiprecision multiplication technique,

which is called ‘operand scanning.’ The arrows indicate the

order of computation, and the computations are performed

from the rightmost corner to the leftmost corner. In each row,

load instructions are executed 2n times for loading the

multiplicand result, and the store instructions are executed n

times for storing the result of the partial product. The

number of memory accesses ranges from n
2
 + 3n to 3n

2
 + 2n,

which is determined by the number of available general-

purpose registers for caching intermediate results.

B. Product-Scanning Method

This method computes all partial products in the same

column by using multiplication and addition [4]. Because

each partial product in the column is computed and then

accumulated, registers are not needed for intermediate

results. The results are stored once, and the stored results are

not reloaded because all computations have already been

completed. To perform multiplication, three registers for

accumulation and two registers for the multiplicand, i.e., a

total of five registers, are required. When the number of

registers increases to more than five, the remaining registers

can be used for caching operands.

Fig. 1(b) shows the multiprecision multiplication technique,

which is called ‘product scanning.’ The arrows direct from

the top of the rhombus to the bottom, which means that the

partial products are computed in the same column. The

partial products are computed from right to left. For

computation, load instructions are executed 2n
2
 times for

loading the operands A[i] and B[j] (0 ≤ i, j ≤ (n – 1)) and

store instructions are executed 2n times for storing the

results C[k] (0 ≤ k ≤ (2n – 1)). Therefore, the number of

memory accesses is 2n
2
 +2n.

C. Hybrid-Scanning Method

This method combines the useful features of ‘operand

scanning’ and ‘product scanning’ [5]. Multiplication is

performed on a block scale by using ‘product scanning.’ The

number of rows within the block is defined as d, and the

inner block partial products follow the ‘operand scanning’

rule. Therefore, this method reduces the number of load

instructions by sharing the operands within the block. The

number of rows increases with an increase in the number of

available registers. Therefore, the number of memory

accesses can be reduced by maximizing the number of

shared operands.

Fig. 1(c) shows the multiprecision multiplication technique,

which is called the ‘hybrid’ method, for the case of d = 4.

The computation order is from block 1 to block 4. After

computing block 2, the next computation is block 3. In the

Consecutive Operand-Caching Method for Multiprecision Multiplication, Revisited

http://jicce.org 29

(a)

 (b)

(c)

(d)

Fig. 1. Multiprecision multiplication techniques. (a) Operand scanning.

(b) Product scanning [4]. (c) Hybrid scanning [5]. (d) Operand caching [6].

transition, there are no common operands between block 2

and block 3. Therefore, all operands need to be reloaded

from memory. The total number of memory accesses is

2 ⌈
𝑛2

𝑑
⌉ + 2𝑛, which is determined by the number of rows in

block d.

D. Operand-Caching Method

This method follows ‘product scanning,’ but it divides the

calculation into several row sections [6]. By reordering the

sequence of the inner and outer row sections, the previously

loaded operands in the working registers are reused for

computing the next partial products. A few store instructions

are added, but the number of required load instructions is

reduced. The number of row sections is given by 𝑟 = ⌊
𝑛

𝑒
⌋,

and e denotes the number of words used to cache a digit in

the operand.

Fig. 1(d) shows the multiprecision multiplication technique,

which is called ‘operand caching’ in the case of e = 3. Given

n = 8, the number of row sections is 𝑟 = ⌊
8

3
⌋ = 2. The

remaining section (𝑏𝑖𝑛𝑖𝑡) is computed first, and the main

algorithm parts r0 and r1 are computed subsequently. In a

row, at parts 2, 3, 4, and 5, operands are cached and reused.

For example, between part 2 and part 3 in 𝑟0, operands A[i]

are used for both parts (i = 3, 4, 5). The remaining parts

have the same features. Therefore, the number of required

operand load instructions is reduced. However, between part

4 of 𝑟0 and part 1 of 𝑟1, there is no common operand. The

operand load should be executed for computing the next

partial products. The required number of memory accesses

for the load and store instructions is
2𝑛2

𝑒
 and

𝑛2

𝑒
+ 𝑛 ,

respectively.

III. CONSECUTIVE OPERAND-CACHING
METHOD

In this section, we introduce consecutive operand-caching

multiprecision multiplication [7]. Because this method is

based on ‘operand caching,’ it can perform multiplication

with a reduced number of memory accesses for operand

load instructions by using caching operands. However, the

previous method has to reload operands whenever a row is

changed, which generates an unnecessary overhead.

To overcome these shortcomings, the method divides the

rows and re-scheduled the multiplication sequences. Thus,

they found a contact point among rows that share the

common operands for partial products. Therefore, they can

cache the operands by sharing the operands when a row is

changed. A detailed example is shown in Fig. 2.

A. Structure of Consecutive Operand Caching

The size of the caching operand e and the number of

elements n are set to 2 and 8, respectively. The value e is

determined by the number of working registers in the

platform. The number of rows is r = 4, following the

notation 𝑟 = ⌊
𝑛

𝑒
⌋. Given the number of working registers w,

the value is w = 3 + 2e. Three working registers are used for

accumulating the intermediate results obtained from the

partial products.

Fig. 2. Consecutive operand-caching method [7].

J. lnf. Commun. Converg. Eng. 13(1): 27-35, Mar. 2015

http://dx.doi.org/10.6109/jicce.2015.13.1.027 30

(a)

(b)

(c)

(d)

(e)

Fig. 3. Rhombus form of the proposed method (a–i) represents e = 2–10.

(f)

(g)

(h)

(i)

Consecutive Operand-Caching Method for Multiprecision Multiplication, Revisited

http://jicce.org 31

The algorithm is divided into three parts. The

initialization block 𝑏𝑡𝑜𝑝 is the top of the rhombus and the

remaining rows are divided into two parts, 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 and

𝑏𝑚𝑖𝑑𝑑𝑙𝑒. The 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 part is located at the bottom of the

rhombus. The remaining rows, 𝑏𝑚𝑖𝑑𝑑𝑙𝑒, are divided into two

parts on the basis of the following condition. If ⌊
𝑛

𝑒
⌋ =

𝑛

𝑒
 is

true, 𝑏𝑚𝑖𝑑𝑑𝑙𝑒 is not divided; otherwise, 𝑏𝑚𝑖𝑑𝑑𝑙𝑒 is divided

into the 𝑏𝑚𝑖𝑑𝑑𝑙𝑒 and 𝑏𝑙𝑎𝑠𝑡 parts. The 𝑏𝑙𝑎𝑠𝑡 part is the last

sequence of the rows that have a different operand size from

the other rows because the size of operands A in the last part,

n – re, is smaller than e. An example of 𝑏𝑙𝑎𝑠𝑡 is shown in

Fig. 3(b, e, f, g, and h). All the partial products are

computed from right to left, and the detailed process is

described as follows.

B. Top of Rhombus 𝒃𝒕𝒐𝒑

The block located at the top of the rhombus executes

‘product scanning’ using operands of size (n – re). Operands

A[6,7] and B[0,1] are used for the 𝑏𝑡𝑜𝑝 process, which is

shown in Fig. 3. In the computation of the partial products,

the number of caching operands is smaller than the number

of required operands e. Therefore, the operand reload

process does not occur. If ⌊
𝑛

𝑒
⌋ =

𝑛

𝑒
 is true, the 𝑏𝑡𝑜𝑝 process

is skipped.

C. Row Processing

The row parts compute the overlapping store and load

instructions between the bottom and the upper rows. 𝑟1 is

located over 𝑟0; hence, memory addresses storing the

intermediate results C[k] (2 ≤ k ≤ 11) are accessed twice to

update the previous results. Throughout the computations,

operands are consecutively cached. When operand B[j] is

loaded for the partial products in the rows, operand A[i] is

maintained and vice versa. Whenever the row is changed,

operand A[i] is still maintained for the next partial product

of the row. Therefore, the number of load instructions is

significantly reduced.

D. Bottom Rows 𝒃𝒃𝒐𝒕𝒕𝒐𝒎

The block located at the bottom of the rhombus can reuse

caching operands B[0] and B[1] from 𝑏𝑡𝑜𝑝. First, operands

A[i] (i = 0, 1) are loaded as caching operands, and then,

partial products are computed with operands B[j] (j = 0, ...,

7). When partial products with caching operands A[i] are

completed, the next sequence of operands A[i] (i = 2, 3) is

loaded and the partial products are computed using e, the

size of the caching operand.

E. Middle Rows 𝒃𝒎𝒊𝒅𝒅𝒍𝒆

The block located between 𝑏𝑡𝑜𝑝 and 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 can use

caching operands A[i] from the previous row block. The

partial products are computed with operands B[j]. The range

of j increases for the remaining partial products in a row. In

the second row (𝑟1), the range of is 0 ≤ 𝑗 ≤ 5 . After

operands B[4] and B[5] are cached, the next sequence of

operands A[i] (i = 4, 5) is loaded and the partial products are

computed using e. Finally, the remaining partial products,

with operands A[i] on the left side of the rhombus, are

computed.

F. End Rows 𝒃𝒍𝒂𝒔𝒕

The 𝑏𝑙𝑎𝑠𝑡 part occurs when the condition is ⌊
𝑛

𝑒
⌋ ≠

𝑛

𝑒
.

Most processes are equal to 𝑏𝑚𝑖𝑑𝑑𝑙𝑒, but in the last part, the

computation of partial products using operands A[i] (re ≤ i

< n) with B[j] (n – re ≤ j < n) is different. Because the

remaining operands A[i] are smaller than the caching

operand e, the partial products are computed with the

narrower width of operands than in the case of 𝑏𝑚𝑖𝑑𝑑𝑙𝑒.

G. Consecutive Operand Caching with
Common Operands

In this section, we will describe the features of common

operands for consecutive operand caching. The process is

computed in the following order: (a), (b), (c), and (d), as

shown in Fig. 4. Firstly, in process (a), 𝑏𝑖𝑛𝑖𝑡 is computed

with A[7], A[8], B[0], and B[1]. After the 𝑏𝑖𝑛𝑖𝑡

computations, previously loaded operands B[0] and B[1] are

maintained and used for the first row computation because

the operands are common between initial section and first

row. In process (b), operands A[0] and A[1] are maintained

and used for the computation of the bottom of 𝑟0, loading

operand B in an ascending order. After these computations,

in process (c), the remaining 𝑟0 is computed by caching

operands B[6] and B[7]. After these operations, the row is

changed from row0 to row1. In this case, we still have

common operands A[2] and A[3]. The remaining parts can

also be computed with this procedure. Therefore, we can

keep these operands throughout the process.

H. Full Operand-Caching Multiplication

Earlier, we discussed that the operand-caching method

highly optimizes the number of memory accesses by finely

caching operands. However, we found that the method has

room for performance improvement in the case of

(𝑛 − 𝑟𝑒 ≠ 0) where the operand size, cached operand, and

the number of rows are denoted by n, e, and r, respectively.

J. lnf. Commun. Converg. Eng. 13(1): 27-35, Mar. 2015

http://dx.doi.org/10.6109/jicce.2015.13.1.027 32

This is because previous works missed two things. First,

operands of the top block can be cached on the basis of the

size of the cached operand (e) during operand caching.

Second, the number of intermediate memory accesses in the

bottom block can be reduced by adjusting the size of the

structure in consecutive operand caching.

In the following section, we present two cases on the

basis of the operand size (n) and the cached operand size

(e) because the consecutive operand-caching method has

an inefficient structure when the value (n – re) is smaller

than (e).

(a)

(b)

(c)

(d)

Fig. 4. Consecutive operand caching with common operands. (a), (b),

(c), and (d) describe the order of computation.

Fig. 5. Full operand-caching method in case 1.

Fig. 6. Normal consecutive operand-caching method in case 2.

In Fig. 4, at row r2, partial products of A[6], A[7], and

B[2]–B[7] are calculated. In this case, the value (n – re) and

the value (e) are the same, and operand caching is efficiently

conducted. However, if (n – re) is smaller than (e), this

process is inefficient because the size of operand caching is

down to (n – re) and partial products are calculated

according to a narrow long tail-shaped computation order.

With this insight, we set specific equations for selecting an

appropriate multiplication method depending on the operand

size (n) and the caching operand size (e).

- Case 1: 𝟎 < 𝒏 − 𝒓𝒆 ≤ ⌊
𝒆

𝟐
⌋

Case 1 is depicted in Fig. 5, where (n), (e), and (r) are 14,

4, and 3, respectively, and this meets the condition of case 1

(0 < 14 − 4 × 3 ≤ ⌊
4

2
⌋). The process starts from the top of

the rhombus form 𝑏𝑡𝑜𝑝. In the process, operands including

A[12], A[13] and B[0], B[1] are loaded. In the first row 𝑟1,

operands including B[0] and B[1] are already loaded into

registers from the previous process and we can reuse these

operands. After row 𝑟1, operands including A[10]–A[13]

and B[2]–B[5] are cached. The number of cached operands

is four; therefore, each of the four registers for operands A

and B can maintain four variables. In the second row 𝑟0,

operands including B[2] and B[3] are re-used. Finally,

compared with the previous results, in this case, we can

decrease the number of memory accesses by up to the size

of the cached operands.

Consecutive Operand-Caching Method for Multiprecision Multiplication, Revisited

http://jicce.org 33

- Case 2: ⌊
𝒆

𝟐
⌋ < 𝒏 − 𝒓𝒆 ≤ 𝒆

Case 2 is depicted in Figs. 6 and 7 where (n), (e), and (r)

are 15, 4, and 3, respectively, and this meets the condition of

case 2 (⌊
4

2
⌋ < 15 − 4 × 3 ≤ 4). Fig. 6 illustrates normal

consecutive operand caching. The computation order is 𝑏𝑡𝑜𝑝,

𝑏𝑏𝑜𝑡𝑡𝑜𝑚 , 𝑟0 , and 𝑟1 . At the end of 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 , operands

including A[4]–A[7] and B[11]–B[14] are cached. In the

next row 𝑟0, operands including A[4]–A[7] and B[0]–B[3]

are used. The operands including A[4]–A[7] are cached

from the previous session; thus, we can re-use these

operands. After the updating process, the intermediate

results are calculated by re-accessing the memory. This

process seems to be flawless. However, we have found that

the intermediate result access can be optimized to the size of

the cached operands. In Fig. 6, at 𝑏𝑏𝑜𝑡𝑡𝑜𝑚 , intermediate

results from C[4] to C[22] are saved and then reloaded in

the following row 𝑟0. At the end of 𝑏𝑏𝑜𝑡𝑡𝑜𝑚, we calculated

results including C[19]–C[22] by using the size of the

cached operand (e = 4). In Fig. 7, we illustrate the proposed

optimized operand-caching method. The general process is

the same as that explained previously, but we chose the size

of the bottom row as 3 (i.e., n – re = 15 – (3 × 4)) and this

leads to saving results from C[4]–C[21] and loading results

including C[4]–C[21]. Finally, the number of memory

accesses is decreased with an increase in the number of

operand-caching operations. In row 𝑟0, operands including

A[4]–A[6] are reused and A[7] is loaded once and fully used

throughout the process 𝑟0. This feature guarantees a certain

number of operand-caching operations while decreasing the

number of intermediate result accesses. The reduced number

of memory accesses is 2 × (𝑒 − (𝑛 − 𝑟𝑒)).

IV. RESULTS

In this section, we analyze the complexity of memory

accesses, which are expensive instructions in the practical

implementations of multiprecision multiplication. To show

performance enhancement, we implemented methods on a

representative 8-bit AVR microprocessor.

A. Memory Access

Since memory access is the most time-consuming

operation, we calculated the number of memory accesses.

The number of load and store instructions in the operand-

caching method is calculated as follows: the notation p

denotes the index of the row for the partial product.

4(𝑛 − 𝑟𝑒) + 4 ∑ (𝑝𝑒 + 𝑛 − 𝑟𝑒) − 2𝑛 = 2𝑛 + 4𝑟𝑛 − 2𝑒𝑟2 − 2𝑒𝑟𝑟
𝑝=1 . (1)

2(𝑛 − 𝑟𝑒) + 2 ∑ (𝑝𝑒 + 𝑛 − 𝑟𝑒) = 2𝑛 + 2𝑟𝑛 − 𝑒𝑟2 − 𝑒𝑟𝑟
𝑝=1 . (2)

Fig. 7. Full operand-caching method in case 2.

The consecutive operand-caching method is evaluated

under the condition ⌊𝑛/𝑒⌋ ≠ 𝑛/𝑒. This case is previously

considered an inefficient part due to the effect of the long-

tail problem, but in this paper, we improved this drawback

by introducing novel structures. Eqs. (3) and (4) express the

costs of the load and store instructions for the consecutive

operand-caching method, respectively.

2(𝑛 − 𝑟𝑒) + (𝑟 − 1)(𝑛 + 𝑒) + (𝑒 + 𝑟𝑒) + 2 × (𝑛 − 𝑟𝑒) +

(𝑟 − 1)(𝑛 + 𝑒) = 2𝑛 − 𝑟𝑒 + 2𝑟𝑛 − 𝑒. (3)

2 × (𝑛 − 𝑟𝑒) + (𝑟 − 1)(𝑛 + 2𝑒) + (2𝑛 − 𝑟𝑒 + 𝑒)

= 3𝑛 − 𝑟𝑒 + 𝑟𝑛 − 𝑒. (4)

The full operand-caching method uses relatively few

memory accesses including the load and store operations. In

the case of normal operand caching, we can decrease the

number of operand accesses by e = (n – re), and the load and

store operations are generalized in Eqs. (5) and (6). In the

case of consecutive operand caching, the number of load

and store operations is decreased by e = (n – re). Finally, the

load and store operations are derived in Eqs. (7) and (8),

respectively. In Tables 1 and 2, the number of memory

accesses is described. The number of memory accesses is

reduced by 5.8% using the proposed method.

4(𝑛 − 𝑟𝑒) + 4 ∑(𝑝𝑒 + 𝑛 − 𝑟𝑒) − 2𝑛 − 𝑒

𝑟

𝑝=1

= 2𝑛 − 2𝑟𝑒 − 2𝑟2𝑒 + 4𝑟𝑛 − 𝑒. (5)

2(𝑛 − 𝑟𝑒) + 2 ∑ (𝑝𝑒 + 𝑛 − 𝑟𝑒) = 2𝑛 − 𝑟𝑒 − 𝑟2𝑒 + 2𝑟𝑛𝑟
𝑝=1 . (6)

2(𝑛 − 𝑟𝑒) + (𝑟 − 1)(𝑛 + 𝑒) + (𝑒 + 𝑟𝑒) + 2 × (𝑛 − 𝑟𝑒) +

(𝑟 − 1)(𝑛 + 𝑒) − (𝑒 − 𝑛 + 𝑟𝑒) = 3𝑛 − 2𝑟𝑒 + 2𝑟𝑛 − 2𝑒. (7)

2 × (𝑛 − 𝑟𝑒) + (𝑟 − 1)(𝑛 + 2𝑒) + (2𝑛 − 𝑟𝑒 + 𝑒) − (𝑒 − 𝑛 + 𝑟𝑒)

= 4𝑛 − 2𝑟𝑒 + 𝑟𝑛 − 2𝑒. (8)

B. Evaluation on 8-Bit Platform AVR

We evaluated the performance of the proposed method by

using MICAz mote, which is equipped with an ATmega128

J. lnf. Commun. Converg. Eng. 13(1): 27-35, Mar. 2015

http://dx.doi.org/10.6109/jicce.2015.13.1.027 34

8-bit processor clocked at 7.3728 MHz. It has a 128-kB

EEPROM chip and a 4-kB RAM chip [8]. The ATmega128

processor has an RISC architecture with 32 registers.

Among them, six registers (r26–r31) serve as special

pointers for indirect addressing. The remaining 26 registers

are available for arithmetic operations. One arithmetic

instruction incurs one clock cycle, and a memory instruction

or memory addressing or 8-bit multiplication incurs two

processing cycles. We used six registers for the operand and

result pointer, two for the multiplication result, four for

accumulating the intermediate result, and the remaining

registers for caching operands.

Table 1. Comparison of the number of load and store instructions for

multiprecision multiplication

Method
Memory access operations

Load Store Total

OC [6]
2𝑛 − 2𝑟𝑒

− 2𝑟2𝑒 + 4𝑟𝑛

2𝑛 − 𝑟𝑒 − 𝑟2𝑒

+ 2𝑟𝑛

4𝑛 − 3𝑟𝑒

− 3𝑟2𝑒 + 6𝑟𝑛

COC
2𝑛 − 𝑟𝑒 + 2𝑟𝑚

− 𝑒

3𝑛 − 𝑟𝑒 + 𝑟𝑛

− 𝑒

5𝑛 − 2𝑟𝑒 + 3𝑟𝑛

− 2𝑒

FCOC

(case 1)

2𝑛 − 2𝑟𝑒

− 2𝑟2𝑒 + 4𝑟𝑛

− 𝑒

2𝑛 − 𝑟𝑒 − 𝑟2𝑒

+ 2𝑟𝑛

4𝑛 − 3𝑟𝑒

− 3𝑟2𝑒 + 6𝑟𝑛

− 𝑒

FCOC

(case 2)

3𝑛 − 2𝑟𝑒

+ 2𝑟𝑛 − 2𝑒

4𝑛 − 2𝑟𝑒 + 𝑟𝑛

− 2𝑒

7𝑛 − 4𝑟𝑒

+ 3𝑟𝑛 − 4𝑒

OC: operand caching, COC: consecutive-operand caching, FCOC: fully

consecutive operand caching.

Table 2. Multiprecision multiplication memory access result obtained

using various methods with different operand sizes

Method
Operand size

160 192 224 256

OC [6] 140 204 268 344

COC [7] 130 204 248 368

FCOC 130 192 244 334

OC: operand caching, COC: consecutive-operand caching, FCOC: fully

consecutive operand caching.

Table 3. Multiprecision multiplication clock cycle result obtained using

various methods with different operand size

Method
Operand size

160 192 224 256

OC [6] 2,395 3,469 N/A 6,123

COC [7] 2,356 3,464 4,644 6,180

FCOC 2,339 3,407 4,594 6,027

Enhancement against

OC & COC

2.34 1.78 N/A 1.56

0.72 1.64 1.07 2.47

OC: operand caching, COC: consecutive-operand caching, FCOC: fully

consecutive operand caching.

Table 4. Instruction counts for the proposed multiplication on the

ATmega128 (excluding PUSH/POP)

Operand Load Store Mul Others Total

160 70 60 400 1,279 2,339

192 116 85 576 1,859 3,407

224 142 109 784 2,524 4,594

256 200 136 1,024 3,308 6,027

In the case of multiplication, the proposed method

requires a small number of memory accesses, which can

reduce the required operand access. To optimize perfor-

mance, we further applied the carry-once method, which

updates two intermediate results at once [9], which in turn

reduces an addition operation in every intermediate update.

In Table 3, we compared the proposed method including

consecutive operand caching and fully consecutive operand

caching with operand caching. In four representative cases,

we achieved performance enhancement by 1.63% and 2.34%

for consecutive operand caching and fully consecutive

operand caching as compared to operand caching,

respectively. The detailed instruction information is available

in Table 4.

C. Limitation of the Proposed Method

RSA and ECC are widely used in public key cryptography.

Compared to ECC, RSA requires at least 1024- or 2048-bit

multiplication. The operand size is highly related to

performance. When it comes to embedded processors, 2048-

bit RSA is extremely slow. Recently, Liu and Großschädl

[10] proposed a hybrid finely integrated product scanning

method that achieved 220,596 clock cycles for 1024-bit

multiplication. The problem was that the focus was only on

fast implementation, and therefore, all the program codes

were written in unrolled way. However, in the case of 1024-

bit multiplication, the code size was about 100 kB.

Furthermore, the proposed method cannot be used for all

microprocessors. The MSP430 and SIMD processors have

different hardware multipliers and instruction sets; therefore,

a straightforward implementation of the proposed method

does not guarantee high performance [9, 11]. In this case,

we should carefully re-design the multiplication method to

fully exploit the advantages of both specific hardware

multipliers and multiplication structures.

V. CONCLUSION

The previous best-known method reduced the number of

load instructions by using caching operands. However, there

is a little room for further performance improvement, which

could be brought about by reducing the number of load

Consecutive Operand-Caching Method for Multiprecision Multiplication, Revisited

http://jicce.org 35

instructions. In this study, we attempted to achieve high

performance enhancement by introducing a fully operand

cached version of the previous design. The evaluation

results showed an improvement in the performance of this

method, brought about by an analysis of the total number of

load and store instructions. For more practical results, we

implemented the method using a microprocessor and

evaluated the clock cycles for the operation. This algorithm

could be applied to other platforms and various public key

cryptography methods.

ACKNOWLEDGMENTS

This work was partly supported by the ICT R&D program

of MSIP/IITP (No. 10043907, Development of High-

Performance IoT Device and Open Platform with Intelligent

Software) and the Ministry of Science, ICT and Future

Planning (MSIP), Korea, under the Information Technology

Research Center support program (No. NIPA-2014-H0301-

14-1048) supervised by the National IT Industry Promotion

Agency (NIPA).

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining

digital signatures and public-key cryptosystems,” Communications

of the ACM, vol. 21, no. 2, pp. 120-126, 1978.

[2] D. Hankerson, S. Vanstone, and A. J. Menezes, Guide to Elliptic

Curve Cryptography. New York, NY: Springer, 2004.

[3] M. Scott, “Implementing cryptographic pairings,” in Paring-Based

Cryptography (Pairing2007), Lecture Notes in Computer

Science, vol. 4575, pp. 177-196, 2007

[4] P. G. Comba, “Exponentiation cryptosystems on the IBM

PC,” IBM Systems Journal, vol. 29, no. 4, pp. 526-538, 1990.

[5] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz,

“Comparing elliptic curve cryptography and RSA on 8-bit CPUs,”

in Cryptographic Hardware and Embedded Systems (CHES 2004).,

Lecture Notes in Computer Science, vol. 3156, pp. 119-132, 2004.

[6] M. Hutter and E. Wenger, “Fast multi-precision multiplication for

public-key cryptography on embedded microprocessors,”

in Cryptographic Hardware and Embedded Systems (CHES 2011),

Lecture Notes in Computer Science, vol. 6917, pp. 459-474, 2011.

[7] H. Seo and H. Kim, “Multi-precision multiplication for public-key

cryptography on embedded microprocessors,” in Information

Security Applications, Lecture Notes in Computer Science, vol.

7690, pp. 55-67, 2012.

[8] J. L. Hill and D. E. Culler, “Mica: a wireless platform for deeply

embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12-24, 2002.

[9] H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim, “Binary and prime

field multiplication for public key cryptography on embedded

microprocessors,” Security and Communication Networks, vol. 7,

no. 4, pp. 774-787, 2014.

[10] Z. Liu and J. Großschädl, “New speed records for Montgomery

modular multiplication on 8-bit AVR microcontrollers,”

in Progress in Cryptology (AFRICACRYPT 2014), Lecture Notes

in Computer Science, vol. 8469, pp. 215-234, 2014.

[11] H. Seo, K. A. Shim, and H. Kim, “Performance enhancement of

TinyECC based on multiplication optimizations,” Security and

Communication Networks, vol. 6, no. 2, pp. 151-160, 2013.

received his B.S.EE from Pusan National University, Pusan, Republic of Korea, in 2010. He also received his M.S.
and Ph.D. in Computer Engineering from the same university. His research interests include sensor networks,
information security, elliptic curve cryptography, and RFID security.

received his B.S.EE from Kyungpook National University, Daegu, Republic of Korea, in 1993, and his M.S. and Ph.D.
in Electronic and Electrical Engineering from Pohang University of Science and Technology (POSTECH), Pohang,
Republic of Korea, in 1995 and 1999, respectively. From July 2003 to June 2004, he studied with the COSY group at
the Ruhr-University of Bochum, Germany. He was a senior member of the technical staff at the Electronics and
Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea. He is currently working as an associate
professor with the Department of Computer Engineering, School of Computer Science and Engineering, Pusan
National University, Busan, Republic of Korea. His research interests include RFID technology, sensor networks,
information security, and computer architecture. Currently, his main research focus is on mobile RFID technology and
sensor networks, public key cryptosystems, and their security issues. He is a member of the IEEE and the
International Association for Cryptologic Research (IACR).

