DOI QR코드

DOI QR Code

Effect of topographical control by a micro-molding process on the activity of human Mesenchymal Stem Cells on alumina ceramics

  • Kim, Soo-Yean (Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kang, Jong-Ho (Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Seo, Won-Seon (Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Suk-Won (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, Institute of Oral Biology, School of Dentistry, Kyung Hee University) ;
  • Oh, Nam-Sik (Department of Dentistry, College of Medicine, Inha University) ;
  • Cho, Hyung-Koun (Department of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, Myung-Hyun (Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology)
  • Received : 2015.08.16
  • Accepted : 2015.10.27
  • Published : 2015.12.31

Abstract

Background: Numerous studies have reported that microgrooves on metal and polymer materials can affect cell adhesion, proliferation, differentiation and guidance. However, our knowledge of the cell activity associated with microgrooves on ceramics, such as alumina, zirconia, hydroxyapatite and etc, is very incomplete, owing to difficulties in the engraving of microgrooves on the hard surface of the base material. In this study, microgrooves on alumina were fabricated by a casting process using a polydimethylsiloxane micro-mold. The cell responses of Human Mesenchymal Stem Cells on the alumina microgrooves were then evaluated. Results: Microgrooves on an alumina surface by micro-mold casting can enhance the adhesion, differentiation of osteoblasts as well as gene expression related to osteoblast differentiation. The ALP activity and calcium concentration of the cells on alumina microgrooves were increased by more than twice compared to a non-microgrooved alumina surface. Moreover, regarding the osteoblast differentiation of hMSCs, the expression of ALP, RUNX2, OSX, OC and OPN on the microgrooved alumina were all significantly increased by 1.5 ~ 2.5 fold compared with the non-microgrooved alumina. Conclusion: Altering the topography on alumina by creating microgrooves using a micro-molding process has an important impact on the behavior of hMSCs, including the adhesion, differentiation of osteoblasts and osteoblast-specific gene expression. The significant increase in hMSC activity is explained by the increasing of material transportation in parallel direction and by the extending of spreading distance in perpendicular direction.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. Walboomers XF, Monaghan W, Curtis AS, Jansen JA. Attachment of fibroblasts on smooth and microgrooved polystyrene. J Biomed Mater Res. 1999;46:212-20. https://doi.org/10.1002/(SICI)1097-4636(199908)46:2<212::AID-JBM10>3.0.CO;2-Y
  2. Lee MH, Oh N, Lee SW, Leesungbok R, Kim SE, Yun YP, et al. Factors influencing osteoblast maturation on microgrooved titanium substrata. Biomaterials. 2010;31:3804-15. https://doi.org/10.1016/j.biomaterials.2010.01.117
  3. Zahor D, Radko A, Vago R, Gheber LA. Organization of mesenchymal stem cells is controlled by micropatterned silicon substrates. Mater Sci Eng C. 2007;27:117-21. https://doi.org/10.1016/j.msec.2006.03.005
  4. Hench LL. Bioceramics: From concept to clinic. J Am Ceram Soc. 1991;74:1487-510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  5. Flemming RG, Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573-88. https://doi.org/10.1016/S0142-9612(98)00209-9
  6. Holthaus MG, Treccani L, Rezwan K. Comparison of micropatterning methods for ceramic surfaces. J Euro Ceram Soc. 2011;31:2809-17. https://doi.org/10.1016/j.jeurceramsoc.2011.07.020
  7. Donthu S, Pan Z, Wu N, Dravid V. Facile scheme for fabricating solid-state nanostructures using e-beam lithography and solution precursors. Nano Lett. 2005;5:1710-5. https://doi.org/10.1021/nl050954t
  8. Nadeem D, Sjostrom T, Wilkinson A, Smith CA, Oreffo RO, Dalby MJ, et al. Embossing of micropatterned ceramics and their cellular response. J Biomed Mater Res A. 2013;101:3247-55.
  9. Dhara S, Su B. Green machining to Net shape alumina ceramics prepared using different processing routes. Int J Appl Ceram Tech. 2005;2:262-70. https://doi.org/10.1111/j.1744-7402.2005.02021.x
  10. Noguera R. 3D fine scale ceramic components formed by ink-jet prototyping process. J Euro Ceram Soc. 2005;25:2055-205. https://doi.org/10.1016/j.jeurceramsoc.2005.03.223
  11. Holthaus MG, Kropp M, Treccani Lang L, Rezwan K. Versatile crack-free ceramic micropatterns made by a modified molding technique. J Am Ceram Soc. 2010;93:2574-8. https://doi.org/10.1111/j.1551-2916.2010.03902.x
  12. Tian Y, Jiang L. Wetting: Intrinsically robust hydrophobicity. Nat Mater. 2013;12:291-2. https://doi.org/10.1038/nmat3610
  13. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed selfassembled monolayers. Biomaterials. 2007;28:3074-82. https://doi.org/10.1016/j.biomaterials.2007.03.013
  14. Iwasa F, Hori N, Ueno T, Minamikawa H, Yamada M, Ogawa T. Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials. 2010;31:2717-27. https://doi.org/10.1016/j.biomaterials.2009.12.024
  15. Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials. 2003;24:4663-70. https://doi.org/10.1016/S0142-9612(03)00366-1
  16. Curtis AS, Forrester JV, McInnes C, Lawrie F. Adhesion of cells to polystyrene surfaces. J Cell Biol. 1983;97:1500-6. https://doi.org/10.1083/jcb.97.5.1500
  17. Chanda A. Bone cell-materials interaction on alumina ceramics with different grain sizes. Mater Sci Eng C. 2009;29:1201-6. https://doi.org/10.1016/j.msec.2008.09.023
  18. Gonzales-Carrasco JL. Metals as bone repair materials. In: Planell JA, editor. Bone repair biomaterials. Boca Raton: CRC Press; 2009. p. 154-93.
  19. Anselme K, Bigerelle M, Maguer KL, Maguer AL, Hardouin P, Hildebrand HF, et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behavior. Biomaterials. 2000;21:1567-77. https://doi.org/10.1016/S0142-9612(00)00042-9
  20. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28:988-94. https://doi.org/10.1021/ie50320a024
  21. Wang H, Tasi H, Chen H, Shing T. Capillarity of rectangular micro grooves and their application to heat pipes. Tamkang J Sci Eng. 2005;8:249-55.
  22. Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD. Osteoblastlike cells are sensitive to submicron-scale surface structure. Clin Oral Implants Res. 2006;17:258-64. https://doi.org/10.1111/j.1600-0501.2005.01195.x
  23. Hamilton DW, Brunette DM. The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials. 2007;28:1806-19. https://doi.org/10.1016/j.biomaterials.2006.11.041
  24. Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD. Topographical control of cell behaviour: I. Simple step cues. Development. 1987;99:439-48.
  25. Webster TJ, Siege RW, Bizios R. Nanoceramic roughness enhance osteoblast and osteoclast and osteoclast functions for improved orthopaedic/dental implant efficacy. Scr Mater. 2001;44:1639-42. https://doi.org/10.1016/S1359-6462(01)00873-9
  26. Ismail FSM, Rohanizadeh R, Atwa S, Mason RS, Ruys AJ, Martin PJ, et al. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. J Mater Sci Mater Med. 2007;18:705-14.
  27. Kapoor A, Caporali EHG, Kenis PJA, Stewart MC. Microtopographically patterned surfaces promote the alignment of tenocytes and extracellular collagen. Acta Biomater. 2010;6:2580-9. https://doi.org/10.1016/j.actbio.2009.12.047
  28. Dumas V, Rattner A, Vico L, Audouard E, Dumas JC, Bertrand PNP. Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization. J Biomed Mater Res A. 2012;100A:3108-16. https://doi.org/10.1002/jbm.a.34239
  29. Lu X, Leng Y. Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. J Biomed Mater Res A. 2003;66A:677-87. https://doi.org/10.1002/jbm.a.10022
  30. Leesungbok R, Lee SW, Ahn SJ, Kim KH, Jung SH, Park SJ, et al. Specific temporal culturing and microgroove depth influence osteoblast differentiation of human periodontal ligament cells grown on titanium substrata. Tissue Eng Regen Med. 2012;9:128-36. https://doi.org/10.1007/s13770-012-0128-z
  31. Holthaus MG. Orientation of human osteoblasts on hydroxyapatite-based microchannels. Acta Biomater. 2012;8:394-403. https://doi.org/10.1016/j.actbio.2011.07.031
  32. Perizzolo D, Lacefield WR, Brunette DM. Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatiteand titanium-coated micromachined surfaces. J Biomed Mater Res. 2001;56:494-503. https://doi.org/10.1002/1097-4636(20010915)56:4<494::AID-JBM1121>3.0.CO;2-X

Cited by

  1. Direct photo-patterning on anthracene containing polymer for guiding stem cell adhesion vol.20, pp.1, 2015, https://doi.org/10.1186/s40824-016-0072-4
  2. Light-induced surface patterning of alumina vol.10, pp.34, 2015, https://doi.org/10.1039/d0ra02931a
  3. Regulation of substrate surface topography on differentiation of mesenchymal stem cells vol.36, pp.5, 2015, https://doi.org/10.1007/s10409-020-00997-6