DOI QR코드

DOI QR Code

Evaluation of ciprofloxacin and metronidazole encapsulated biomimetic nanomatrix gel on Enterococcus faecalis and Treponema denticola

  • Kaushik, Sagar N (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Scoffield, Jessica (Department of Pediatric Dentistry, University of Alabama at Birmingham) ;
  • Andukuri, Adinarayana (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Alexander, Grant C (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Walker, Taneidra (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Kim, Seokgon (Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University) ;
  • Choi, Sung Chul (Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University) ;
  • Brott, Brigitta C (Cardiovascular Division, School of Medicine, University of Alabama at Birmingham) ;
  • Eleazer, Paul D (Department of Endodontics, University of Alabama at Birmingham) ;
  • Lee, Jin-Yong (Department of Maxillofacial Biomedical Engineering, Kyung Hee University) ;
  • Wu, Hui (Department of Pediatric Dentistry, University of Alabama at Birmingham) ;
  • Childers, Noel K (Department of Pediatric Dentistry, University of Alabama at Birmingham) ;
  • Jun, Ho-Wook (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Park, Jae-Hong (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Cheon, Kyounga (Department of Pediatric Dentistry, University of Alabama at Birmingham)
  • Received : 2015.03.03
  • Accepted : 2015.04.02
  • Published : 2015.06.30

Abstract

Background: A triple antibiotic mixture (ciprofloxacin; CF, metronidazole; MN, and minocycline; MC) has been used for dental root canal medicaments in pulp regeneration therapy. However, tooth discolorations, cervical root fractures, and inadequate pulp-dentin formation have been reported due to the triple antibiotic regimen. Therefore, an antibiotic encapsulated biomimetic nanomatrix gel was developed to minimize the clinical limitations and maximize a natural healing process in root canal infections. In this study, minimal bacterial concentrations (MBC) of the selected antibiotics (CF and MN) were tested in 14 representative endodontic bacterial species. Then MBC of each CF and MN were separately encapsulated within the injectable self-assembled biomimetic nanomatrix gel to evaluate antibacterial level on Enterococcus faecalis and Treponema denticola. Results: Antibiotic concentrations lower than $0.2{\mu}g/mL$ of CF and MN demonstrated antibacterial activity on the 14 endodontic species. Furthermore, 6 different concentrations of CF and MN separately encapsulated with the injectable self-assembled biomimetic nanomatrix gel demonstrated antibacterial activity on Enterococcus faecalis and Treponema denticola at the lowest tested concentration of $0.0625{\mu}g/mL$. Conclusions: These results suggest that each CF and MN encapsulated within the injectable self-assembled biomimetic nanomatrix gel demonstrated antibacterial effects, which could be effective for the root canal disinfection while eliminating MC. In the long term, the antibiotic encapsulated injectable self-assembled biomimetic nanomatrix gel can provide a multifunctional antibiotic delivery method with potential root regeneration. Further studies are currently underway to evaluate the effects of combined CF and MN encapsulated within the injectable self-assembled biomimetic nanomatrix gel on clinical samples.

Keywords

Acknowledgement

Supported by : National Research Foundation

References

  1. Huang GT. Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed). 2011;3:788-800.
  2. Damle SG, Bhattal H, Loomba A. Apexification of anterior teeth: a comparative evaluation of mineral trioxide aggregate and calcium hydroxide paste. J Clin Pediatr Dent. 2012;36:263-8. https://doi.org/10.17796/jcpd.36.3.02354g044271t152
  3. Bose R, Nummikoski P, Hargreaves K. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J Endod. 2009;35:1343-9. https://doi.org/10.1016/j.joen.2009.06.021
  4. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30:196-200. https://doi.org/10.1097/00004770-200404000-00003
  5. Hoshino E, Kurihara-Ando N, Sato I, Uematsu H, Sato M, Kota K, et al. In-vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J. 1996;29:125-30. https://doi.org/10.1111/j.1365-2591.1996.tb01173.x
  6. Reynolds K, Johnson JD, Cohenca N. Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to eliminate potential coronal discolouration: a case report. Int Endod J. 2009;42:84-92. https://doi.org/10.1111/j.1365-2591.2008.01467.x
  7. Schmoldt SJ, Kirkpatrick TC, Rutledge RE, Yaccino JM. Reinforcement of simulated immature roots restored with composite resin, mineral trioxide aggregate, gutta-percha, or a fiber post after thermocycling. J Endod. 2011;37:1390-3. https://doi.org/10.1016/j.joen.2011.07.001
  8. Shimizu E, Jong G, Partridge N, Rosenberg PA, Lin LM. Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure. J Endod. 2012;38:1293-7. https://doi.org/10.1016/j.joen.2012.06.017
  9. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-6. https://doi.org/10.1126/science.8493529
  10. Albuquerque MT, Valera MC, Nakashima M, Nor JE, Bottino MC. Tissueengineering-based strategies for regenerative endodontics. J Dent Res. 2014;93:1222-31. https://doi.org/10.1177/0022034514549809
  11. Huang GT. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med. 2009;4:697-707. https://doi.org/10.2217/rme.09.45
  12. Anderson J, Patterson J, Vines J, Javed A, Gilbert S, Jun H. Biphasic peptide amphiphile nanomatrix embedded with hydroxyapatite nanoparticles for stimulated osteoinductive response. ACS Nano. 2011;5:9463-79. https://doi.org/10.1021/nn203247m
  13. Anderson JM, Andukuri A, Lim D, Jun HW. Modulating the gelation properties of self-assembling peptide amphiphiles. ACS Nano. 2009;9:3447-54.
  14. Jun HW, Paramonov S, Hartgerink JD. Biomimetic self-assembled nanofibers. Soft Matter. 2006;2:177-81. https://doi.org/10.1039/b516805h
  15. Jun HW, Paramonov SE, Dong H, Forraz N, McGuckin C, Hartgerink JD. Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks. J Biomater Sci, Polym Ed. 2008;19:665-76. https://doi.org/10.1163/156856208784089625
  16. Andukuri A, Kushwaha M, Tambralli A, Anderson J, Dean D, Berry J, et al. A hybrid biomimetic nanomatrix composed of electrospun polycaprolactone and bioactive peptide amphiphiles for cardiovascular implants. Acta Biomater. 2011;7:225-33. https://doi.org/10.1016/j.actbio.2010.08.013
  17. Jun HW, Yuwono V, Paramonov SE, Hartgerink JD. Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv Mater. 2005;17:2612-7. https://doi.org/10.1002/adma.200500855
  18. Kushwaha M, Anderson JM, Bosworth CA, Andukuri A, Minor WP, Lancaster Jr JR, et al. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials. 2010;31:1502-8. https://doi.org/10.1016/j.biomaterials.2009.10.051
  19. Sassone LM, Fidel RA, Faveri M, Guerra R, Figueiredo L, Fidel SR, et al. A microbiological profile of symptomatic teeth with primary endodontic infections. J Endod. 2008;34:541-5. https://doi.org/10.1016/j.joen.2008.02.004
  20. McFarland J. The nephelometer: an instrument for estimating the numbers of bacteria in suspensions used for calculating the opsonic index and for vaccines. J Am Med Assoc. 1907;XLIX:1176-8. https://doi.org/10.1001/jama.1907.25320140022001f
  21. Rankin ID. MIC testing. In: Coyle MB, editor. Manual of antimicrobial susceptibility testing, American Society of Microbiology. 2005. p. 53-62.
  22. Levison ME. Pharmacodynamics of antimicrobial drugs. Infect Dis Clin North Am. 2004;18:451-65. https://doi.org/10.1016/j.idc.2004.04.012
  23. Schwalbe R, Steele-Moore L, Goodwin AC. Antimicrobial Susceptibility Testing Protocols. Boca Raton, FL: CRC Press; 2007.
  24. Andukuri A, Sohn Y, Anakwenze C, Lim D, Brott B, Yoon Y, et al. Enhanced human endothelial progenitor cell adhesion and differentiation by a bioinspired multifunctional nanomatrix. Tissue Eng Part C Meth. 2013;19:375-85. https://doi.org/10.1089/ten.tec.2012.0312
  25. Forbes BA, Sahm DF, Weissfeld AS. Bailey & Scott's diagnostic microbiology. 10th ed. St. Louis: Mosby, Inc.; 1998.
  26. Shapiro E, Baneyx F. Stress-based identification and classification of antibacterial agents: second-generation Escherichia coli reporter strains and optimization of detection. Antimicrob Agents Chemother. 2002;46:2490-7. https://doi.org/10.1128/AAC.46.8.2490-2497.2002
  27. Stubbings WJ, Bostock JM, Ingham E, Chopra I. Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coli. J Antimicrob Chemother. 2004;54:139-43. https://doi.org/10.1093/jac/dkh275
  28. Wade WG. In-vitro activity of ciprofloxacin and other agents against oral bacteria. J Antimicrob Chemother. 1989;24:683-7. https://doi.org/10.1093/jac/24.5.683
  29. Greenstein G. The role of metronidazole in the treatment of periodontal diseases. J Periodontol. 1993;64:1-15. https://doi.org/10.1902/jop.1993.64.1.1
  30. Lewis MA, Carmichael F, MacFarlane TW, Milligan SG. A randomised trial of co-amoxiclav (Augmentin) versus penicillin V in the treatment of acute dentoalveolar abscess. Br Dent J. 1993;175:169-74. https://doi.org/10.1038/sj.bdj.4808263
  31. Poveda Roda R, Bagan JV, Sanchis Bielsa JM, Carbonell Pastor E. Antibiotic use in dental practice. A review. Med Oral Patol Oral Cir Bucal. 2007;12:E186-92.
  32. Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. J Endod. 2013;39:S30-43. https://doi.org/10.1016/j.joen.2012.11.025
  33. Chuensombat S, Khemaleelakul S, Chattipakorn S, Srisuwan T. Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combination: an in vitro study. J Endod. 2013;39:813-9. https://doi.org/10.1016/j.joen.2012.11.041
  34. Labban N, Yassen G, Windsor L, Platt J. The direct cytotoxic effects of medicaments used in endodontic regeneration on human dental pulp cells. Dent Traumatol. 2014;30:429-34. https://doi.org/10.1111/edt.12108
  35. Vidana R, Sullivan A, Billstrom H, Ahlquist M, Lund B. Enterococcus faecalis infection in root canals - host-derived or exogenous source? Lett Appl Microbiol. 2011;52:109-15. https://doi.org/10.1111/j.1472-765X.2010.02972.x
  36. Murad CF, Sassone LM, Faveri M, Hirata Jr R, Figueiredo L, Feres M. Microbial diversity in persistent root canal infections investigated by checkerboard DNA-DNA hybridization. J Endod. 2014;40:899-906. https://doi.org/10.1016/j.joen.2014.02.010
  37. Martinho F, Leite F, Nascimento G, Cirelli J, Gomes B. Clinical investigation of bacterial species and endotoxin in endodontic infection and evaluation of root canal content activity against macrophages by cytokine production. Clin Oral Invest. 2014;18:2095-102. https://doi.org/10.1007/s00784-014-1198-1
  38. Hoentjen F, Harmsen HJ, Braat H, Torrice CD, Mann BA, Sartor RB, et al. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin 10 gene deficient mice. Gut. 2003;52:1721-7. https://doi.org/10.1136/gut.52.12.1721
  39. Ban K, Park HJ, Kim S, Andukuri A, Cho KW, Hwang JW, et al. Cell therapy with embryonic stem cell-derived cardiomyocytes encapsulated in injectable nanomatrix gel enhances cell engraftment and promotes cardiac repair. ACS Nano. 2014;8:10815-25. https://doi.org/10.1021/nn504617g

Cited by

  1. A bio-inspired hybrid nanosack for graft vascularization at the omentum vol.41, pp.None, 2015, https://doi.org/10.1016/j.actbio.2016.06.011
  2. Biomimetic microenvironments for regenerative endodontics vol.20, pp.1, 2016, https://doi.org/10.1186/s40824-016-0061-7
  3. Tolerance and pharmacokinetics of a ciprofloxacin-coated sinus stent in a preclinical model : Tolerance of a ciprofloxacin sinus stent vol.7, pp.4, 2015, https://doi.org/10.1002/alr.21892
  4. Effects of the nitric oxide releasing biomimetic nanomatrix gel on pulp-dentin regeneration: Pilot study vol.13, pp.10, 2018, https://doi.org/10.1371/journal.pone.0205534
  5. Ciprofloxacin-Loaded Gold Nanoparticles against Antimicrobial Resistance: An In Vivo Assessment vol.11, pp.11, 2021, https://doi.org/10.3390/nano11113152