DOI QR코드

DOI QR Code

Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe

  • Moon, Hyojin (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Jisu (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Hansol (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Heo, Somin (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Min, Junseon (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kang, Sebyung (Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2014.10.10
  • Accepted : 2014.11.10
  • Published : 2015.03.31

Abstract

Background: Protein cage nanoparticles are promising nanoplatform candidates for efficient delivery systems of diagnostics and/or therapeutics because of their uniform size and structure as well as high biocompatibility and biodegradability. Encapsulin protein cage nanoparticle is used to develop a cell-specific targeting optical nanoprobe. Results: FcBPs are genetically inserted and successfully displayed on the surface of encapsulin to form FcBP-encapsulin. Selectively binding of FcBP-encapsulin to SCC-7 is visualized with fluorescent microscopy. Conclusions: Encapsulin protein cage nanoparticle is robust enough to maintain their structure at high temperature and easily acquires multifunctions on demand through the combination of genetic and chemical modifications.

Keywords

Acknowledgement

Supported by : UNIST

References

  1. MaHam A, Tang Z, Wu H, Wang J, Lin Y: Protein-based nanomedicine platforms for drug delivery. Small 2009, 5:1706-1721. https://doi.org/10.1002/smll.200801602
  2. Davis ME, Chen Z, Shin DM: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008, 7:771-782. https://doi.org/10.1038/nrd2614
  3. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R: Nanocarriers as an emerging platform for cancer therapy. Nat Nano 2007, 2:751-760. https://doi.org/10.1038/nnano.2007.387
  4. Sun C, Lee JSH, Zhang M: Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliver Rev 2008, 60:1252-1265. https://doi.org/10.1016/j.addr.2008.03.018
  5. Rosler A, Vandermeulen GWM, Klok H-A: Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliver Rev 2012, 64(Supplement):270-279. https://doi.org/10.1016/j.addr.2012.09.026
  6. Gong J, Chen M, Zheng Y, Wang S, Wang Y: Polymeric micelles drug delivery system in oncology. J Control Release 2012, 159:312-323. https://doi.org/10.1016/j.jconrel.2011.12.012
  7. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA: Polymers for drug delivery systems. Annu Rev Chem Biomol 2010, 1:149-173. https://doi.org/10.1146/annurev-chembioeng-073009-100847
  8. Haag R, Kratz F: Polymer therapeutics: concepts and applications. Angew Chemie Int Ed 2006, 45:1198-1215. https://doi.org/10.1002/anie.200502113
  9. Wang AZ, Langer R, Farokhzad OC: Nanoparticle delivery of cancer drugs. Annu Rev Med 2012, 63:185-198. https://doi.org/10.1146/annurev-med-040210-162544
  10. Allen TM, Cullis PR: Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliver Rev 2013, 65:36-48. https://doi.org/10.1016/j.addr.2012.09.037
  11. Gabizon AA: Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 2001, 7:223-225.
  12. Toita R, Murata M, Tabata S, Abe K, Narahara S, Piao JS, Kang J-H, Hashizume M: Development of human hepatocellular carcinoma cell-targeted protein cages. Bioconjugate Chem 2012, 23:1494-1501. https://doi.org/10.1021/bc300015f
  13. Cho K, Wang X, Nie S, Chen Z, Shin DM: Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008, 14:1310-1316. https://doi.org/10.1158/1078-0432.CCR-07-1441
  14. Brigger I, Dubernet C, Couvreur P: Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliver Rev 2002, 54:631-651. https://doi.org/10.1016/S0169-409X(02)00044-3
  15. Farokhzad OC, Langer R: Impact of nanotechnology on drug delivery. ACS Nano 2009, 3:16-20. https://doi.org/10.1021/nn900002m
  16. Aime S, Frullano L, Geninatti Crich S: Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chemie Int Ed 2002, 41:1017-1019. https://doi.org/10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P
  17. Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB: Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 2010, 4:6014-6020. https://doi.org/10.1021/nn1014769
  18. Kwon C, Kang YJ, Jeon S, Jung S, Hong SY, Kang S: Development of protein-cage-based delivery nanoplatforms by polyvalently displaying ${\beta}-cyclodextrins$ on the surface of ferritins through Copper(I)-Catalyzed Azide/Alkyne cycloaddition. Macromol Biosci 2012, 12:1452-1458. https://doi.org/10.1002/mabi.201200178
  19. Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T: Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 2006, 128:16626-16633. https://doi.org/10.1021/ja0655690
  20. Moon H, Kim WG, Lim S, Kang YJ, Shin H-H, Ko H, Hong SY, Kang S: Fabrication of uniform layer-by-layer assemblies with complementary protein cage nanobuilding blocks via simple His-tag/metal recognition. J Mater Chem B 2013, 1:4504-4510. https://doi.org/10.1039/c3tb20554a
  21. Lucon J, Qazi S, Uchida M, Bedwell GJ, LaFrance B, Prevelige PE, Douglas T: Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat Chem 2012, 4:781-788. https://doi.org/10.1038/nchem.1442
  22. Destito G, Yeh R, Rae CS, Finn MG, Manchester M: Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 2007, 14:1152-1162. https://doi.org/10.1016/j.chembiol.2007.08.015
  23. Zeng Q, Wen H, Wen Q, Chen X, Wang Y, Xuan W, Liang J, Wan S: Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials 2013, 34:4632-4642. https://doi.org/10.1016/j.biomaterials.2013.03.017
  24. Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG: Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem 2010, 11:1273-1279. https://doi.org/10.1002/cbic.201000125
  25. Ra J-S, Shin H-H, Kang S, Do Y: Lumazine synthase protein cage nanoparticles as antigen delivery nanoplatforms for dendritic cell-based vaccine development. Clin Exp Vaccine Res 2014, 3:227-234. https://doi.org/10.7774/cevr.2014.3.2.227
  26. Min J, Kim S, Lee J, Kang S: Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. RSC Advances 2014, 4:48596-48600. https://doi.org/10.1039/C4RA10187A
  27. Moon H, Lee J, Min J, Kang S: Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromolecules 2014, 15:3794-3801. https://doi.org/10.1021/bm501066m
  28. Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N: Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 2008, 15:939-947. https://doi.org/10.1038/nsmb.1473
  29. Rahmanpour R, Bugg TDH: Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. FEBS J 2013, 280:2097-2104. https://doi.org/10.1111/febs.12234
  30. Kang YJ, Uchida M, Shin H-H, Douglas T, Kang S: Biomimetic FePt nanoparticle synthesis within Pyrococcus furiosus ferritins and their layer-by-layer formation. Soft Matter 2011, 7:11078-11081. https://doi.org/10.1039/c1sm06319g
  31. Jeong YJ, Kang HJ, Bae KH, Kim MG, Chung SJ: Efficient selection of IgG Fc domain-binding peptides fused to fluorescent protein using E. coli expression system and dot-blotting assay. Peptides 2010, 31:202-206. https://doi.org/10.1016/j.peptides.2009.12.009
  32. Jung YW, Kang HJ, Lee JM, Jung SO, Yun WS, Chung SJ, Chung BH: Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem 2008, 374:99-105. https://doi.org/10.1016/j.ab.2007.10.022
  33. Tatur J, Hagen WR, Matias PM: Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. J Biol Inorg Chem 2007, 12:615-630. https://doi.org/10.1007/s00775-007-0212-3
  34. Kang S, Suci PA, Broomell CC, Iwahori K, Kobayashi M, Yamashita I, Young M, Douglas T: Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett 2009, 9:2360-2366. https://doi.org/10.1021/nl9009028

Cited by

  1. Effective Delivery of Antigen–Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection vol.10, pp.8, 2015, https://doi.org/10.1021/acsnano.5b08084
  2. Engineering Tunable Dual Functional Protein Cage Nanoparticles Using Bacterial Superglue vol.19, pp.7, 2015, https://doi.org/10.1021/acs.biomac.8b00457
  3. Protecting Encapsulin Nanoparticles with Cysteine-Knot Miniproteins vol.15, pp.8, 2018, https://doi.org/10.1021/acs.molpharmaceut.8b00630
  4. Bioengineering Strategies for Protein-Based Nanoparticles vol.9, pp.7, 2015, https://doi.org/10.3390/genes9070370
  5. Pore Engineering for Enhanced Mass Transport in Encapsulin Nanocompartments vol.7, pp.11, 2015, https://doi.org/10.1021/acssynbio.8b00295
  6. Engineering substrate channeling in biosystems for improved efficiency vol.93, pp.12, 2018, https://doi.org/10.1002/jctb.5731
  7. Bacterial encapsulins as orthogonal compartments for mammalian cell engineering vol.9, pp.1, 2015, https://doi.org/10.1038/s41467-018-04227-3
  8. Encapsulins—Bacterial Protein Nanocompartments: Structure, Properties, and Application vol.10, pp.6, 2015, https://doi.org/10.3390/biom10060966
  9. Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery vol.14, pp.10, 2020, https://doi.org/10.1021/acsnano.9b08756
  10. Successful Enzyme Colocalization Strategies in Yeast for Increased Synthesis of Non-native Products vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.606795
  11. Nanotechnological Applications Based on Bacterial Encapsulins vol.11, pp.6, 2015, https://doi.org/10.3390/nano11061467
  12. Two Antibody-Guided Lactic-co-Glycolic Acid-Polyethylenimine (LGA-PEI) Nanoparticle Delivery Systems for Therapeutic Nucleic Acids vol.14, pp.9, 2021, https://doi.org/10.3390/ph14090841
  13. Introduction of Surface Loops as a Tool for Encapsulin Functionalization vol.22, pp.12, 2015, https://doi.org/10.1021/acs.biomac.1c01156