Acknowledgement
Supported by : UNIST
References
- MaHam A, Tang Z, Wu H, Wang J, Lin Y: Protein-based nanomedicine platforms for drug delivery. Small 2009, 5:1706-1721. https://doi.org/10.1002/smll.200801602
- Davis ME, Chen Z, Shin DM: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008, 7:771-782. https://doi.org/10.1038/nrd2614
- Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R: Nanocarriers as an emerging platform for cancer therapy. Nat Nano 2007, 2:751-760. https://doi.org/10.1038/nnano.2007.387
- Sun C, Lee JSH, Zhang M: Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliver Rev 2008, 60:1252-1265. https://doi.org/10.1016/j.addr.2008.03.018
- Rosler A, Vandermeulen GWM, Klok H-A: Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliver Rev 2012, 64(Supplement):270-279. https://doi.org/10.1016/j.addr.2012.09.026
- Gong J, Chen M, Zheng Y, Wang S, Wang Y: Polymeric micelles drug delivery system in oncology. J Control Release 2012, 159:312-323. https://doi.org/10.1016/j.jconrel.2011.12.012
- Liechty WB, Kryscio DR, Slaughter BV, Peppas NA: Polymers for drug delivery systems. Annu Rev Chem Biomol 2010, 1:149-173. https://doi.org/10.1146/annurev-chembioeng-073009-100847
- Haag R, Kratz F: Polymer therapeutics: concepts and applications. Angew Chemie Int Ed 2006, 45:1198-1215. https://doi.org/10.1002/anie.200502113
- Wang AZ, Langer R, Farokhzad OC: Nanoparticle delivery of cancer drugs. Annu Rev Med 2012, 63:185-198. https://doi.org/10.1146/annurev-med-040210-162544
- Allen TM, Cullis PR: Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliver Rev 2013, 65:36-48. https://doi.org/10.1016/j.addr.2012.09.037
- Gabizon AA: Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 2001, 7:223-225.
- Toita R, Murata M, Tabata S, Abe K, Narahara S, Piao JS, Kang J-H, Hashizume M: Development of human hepatocellular carcinoma cell-targeted protein cages. Bioconjugate Chem 2012, 23:1494-1501. https://doi.org/10.1021/bc300015f
- Cho K, Wang X, Nie S, Chen Z, Shin DM: Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008, 14:1310-1316. https://doi.org/10.1158/1078-0432.CCR-07-1441
- Brigger I, Dubernet C, Couvreur P: Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliver Rev 2002, 54:631-651. https://doi.org/10.1016/S0169-409X(02)00044-3
- Farokhzad OC, Langer R: Impact of nanotechnology on drug delivery. ACS Nano 2009, 3:16-20. https://doi.org/10.1021/nn900002m
- Aime S, Frullano L, Geninatti Crich S: Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chemie Int Ed 2002, 41:1017-1019. https://doi.org/10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO;2-P
- Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB: Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 2010, 4:6014-6020. https://doi.org/10.1021/nn1014769
-
Kwon C, Kang YJ, Jeon S, Jung S, Hong SY, Kang S: Development of protein-cage-based delivery nanoplatforms by polyvalently displaying
${\beta}-cyclodextrins$ on the surface of ferritins through Copper(I)-Catalyzed Azide/Alkyne cycloaddition. Macromol Biosci 2012, 12:1452-1458. https://doi.org/10.1002/mabi.201200178 - Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T: Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 2006, 128:16626-16633. https://doi.org/10.1021/ja0655690
- Moon H, Kim WG, Lim S, Kang YJ, Shin H-H, Ko H, Hong SY, Kang S: Fabrication of uniform layer-by-layer assemblies with complementary protein cage nanobuilding blocks via simple His-tag/metal recognition. J Mater Chem B 2013, 1:4504-4510. https://doi.org/10.1039/c3tb20554a
- Lucon J, Qazi S, Uchida M, Bedwell GJ, LaFrance B, Prevelige PE, Douglas T: Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat Chem 2012, 4:781-788. https://doi.org/10.1038/nchem.1442
- Destito G, Yeh R, Rae CS, Finn MG, Manchester M: Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 2007, 14:1152-1162. https://doi.org/10.1016/j.chembiol.2007.08.015
- Zeng Q, Wen H, Wen Q, Chen X, Wang Y, Xuan W, Liang J, Wan S: Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials 2013, 34:4632-4642. https://doi.org/10.1016/j.biomaterials.2013.03.017
- Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG: Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem 2010, 11:1273-1279. https://doi.org/10.1002/cbic.201000125
- Ra J-S, Shin H-H, Kang S, Do Y: Lumazine synthase protein cage nanoparticles as antigen delivery nanoplatforms for dendritic cell-based vaccine development. Clin Exp Vaccine Res 2014, 3:227-234. https://doi.org/10.7774/cevr.2014.3.2.227
- Min J, Kim S, Lee J, Kang S: Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. RSC Advances 2014, 4:48596-48600. https://doi.org/10.1039/C4RA10187A
- Moon H, Lee J, Min J, Kang S: Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromolecules 2014, 15:3794-3801. https://doi.org/10.1021/bm501066m
- Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N: Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 2008, 15:939-947. https://doi.org/10.1038/nsmb.1473
- Rahmanpour R, Bugg TDH: Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. FEBS J 2013, 280:2097-2104. https://doi.org/10.1111/febs.12234
- Kang YJ, Uchida M, Shin H-H, Douglas T, Kang S: Biomimetic FePt nanoparticle synthesis within Pyrococcus furiosus ferritins and their layer-by-layer formation. Soft Matter 2011, 7:11078-11081. https://doi.org/10.1039/c1sm06319g
- Jeong YJ, Kang HJ, Bae KH, Kim MG, Chung SJ: Efficient selection of IgG Fc domain-binding peptides fused to fluorescent protein using E. coli expression system and dot-blotting assay. Peptides 2010, 31:202-206. https://doi.org/10.1016/j.peptides.2009.12.009
- Jung YW, Kang HJ, Lee JM, Jung SO, Yun WS, Chung SJ, Chung BH: Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem 2008, 374:99-105. https://doi.org/10.1016/j.ab.2007.10.022
- Tatur J, Hagen WR, Matias PM: Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. J Biol Inorg Chem 2007, 12:615-630. https://doi.org/10.1007/s00775-007-0212-3
- Kang S, Suci PA, Broomell CC, Iwahori K, Kobayashi M, Yamashita I, Young M, Douglas T: Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett 2009, 9:2360-2366. https://doi.org/10.1021/nl9009028
Cited by
- Effective Delivery of Antigen–Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection vol.10, pp.8, 2015, https://doi.org/10.1021/acsnano.5b08084
- Engineering Tunable Dual Functional Protein Cage Nanoparticles Using Bacterial Superglue vol.19, pp.7, 2015, https://doi.org/10.1021/acs.biomac.8b00457
- Protecting Encapsulin Nanoparticles with Cysteine-Knot Miniproteins vol.15, pp.8, 2018, https://doi.org/10.1021/acs.molpharmaceut.8b00630
- Bioengineering Strategies for Protein-Based Nanoparticles vol.9, pp.7, 2015, https://doi.org/10.3390/genes9070370
- Pore Engineering for Enhanced Mass Transport in Encapsulin Nanocompartments vol.7, pp.11, 2015, https://doi.org/10.1021/acssynbio.8b00295
- Engineering substrate channeling in biosystems for improved efficiency vol.93, pp.12, 2018, https://doi.org/10.1002/jctb.5731
- Bacterial encapsulins as orthogonal compartments for mammalian cell engineering vol.9, pp.1, 2015, https://doi.org/10.1038/s41467-018-04227-3
- Encapsulins—Bacterial Protein Nanocompartments: Structure, Properties, and Application vol.10, pp.6, 2015, https://doi.org/10.3390/biom10060966
- Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery vol.14, pp.10, 2020, https://doi.org/10.1021/acsnano.9b08756
- Successful Enzyme Colocalization Strategies in Yeast for Increased Synthesis of Non-native Products vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.606795
- Nanotechnological Applications Based on Bacterial Encapsulins vol.11, pp.6, 2015, https://doi.org/10.3390/nano11061467
- Two Antibody-Guided Lactic-co-Glycolic Acid-Polyethylenimine (LGA-PEI) Nanoparticle Delivery Systems for Therapeutic Nucleic Acids vol.14, pp.9, 2021, https://doi.org/10.3390/ph14090841
- Introduction of Surface Loops as a Tool for Encapsulin Functionalization vol.22, pp.12, 2015, https://doi.org/10.1021/acs.biomac.1c01156