DOI QR코드

DOI QR Code

Polymeric nanocarrier systems for photodynamic therapy

  • Li, Li (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Huh, Kang Moo (Department of Polymer Science and Engineering, Chungnam National University)
  • Received : 2014.08.07
  • Accepted : 2014.10.02
  • Published : 2015.03.31

Abstract

Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Hamblin MR, Mroz P: Advances in Photodynamic Therapy : Basic, Translational, and Clinical. Boston, Mass: Artech House; 2008.
  2. Juarranz A, Jaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S: Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol Off Publ Federation Spanish Oncol Soc National Cancer Institute Mexico 2008, 10:148-154.
  3. MacDonald IJ, Dougherty TJ: Basic principles of photodynamic therapy. J Porphyr Phthalocya 2001, 5:105-129. https://doi.org/10.1002/jpp.328
  4. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q: Photodynamic therapy. J Natl Cancer Inst 1998, 90:889-905. https://doi.org/10.1093/jnci/90.12.889
  5. Zimcik P, Miletin M: Photodynamic therapy as a new prospective method for cancer treatment. I. History, basic principles. Ceska Slovenska Farmacie Casopis Ceske Farmaceuticke Spolecnosti Slovenske Farmaceuticke Spolecnosti 2004, 53:219-224.
  6. Wilson BC: Photodynamic therapy for cancer: principles. Can J Gastroenterol J Can Gastroenterol 2002, 16:393-396. https://doi.org/10.1155/2002/743109
  7. Dolmans DE, Fukumura D, Jain RK: Photodynamic therapy for cancer. Nat Rev Cancer 2003, 3:380-387. https://doi.org/10.1038/nrc1071
  8. Sutedja TG, Postmus PE: Photodynamic therapy in lung cancer. A review. J Photochem Photobiol B 1996, 36:199-204. https://doi.org/10.1016/S1011-1344(96)07372-1
  9. Senior K: Photodynamic therapy for bladder cancer. Lancet oncol 2005, 6:546.
  10. Biel MA: Photodynamic therapy of head and neck cancers. Methods Mol Biol 2010, 635:281-293. https://doi.org/10.1007/978-1-60761-697-9_18
  11. Goff BA, Blake J, Bamberg MP, Hasan T: Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model. Br J Cancer 1996, 74:1194-1198. https://doi.org/10.1038/bjc.1996.516
  12. Muschter R: Photodynamic therapy: a new approach to prostate cancer. Current Urol Reports 2003, 4:221-228. https://doi.org/10.1007/s11934-003-0073-4
  13. Roberts DJ, Cairnduff F: Photodynamic therapy of primary skin cancer: a review. Br J Plast Surg 1995, 48:360-370. https://doi.org/10.1016/S0007-1226(95)90065-9
  14. Guleng GE, Helsing P: Photodynamic therapy for basal cell carcinomas in organ-transplant recipients. Clin Exp Dermatol 2012, 37:367-369. https://doi.org/10.1111/j.1365-2230.2011.04248.x
  15. Konan YN, Gurny R, Allemann E: State of the art in the delivery of photosensitizers for photodynamic therapy. J Photoch Photobio B 2002, 66:89-106. https://doi.org/10.1016/S1011-1344(01)00267-6
  16. Nowis D, Makowski M, Stoklosa T, Legat M, Issat T, Golab J: Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim Pol 2005, 52:339-352.
  17. Milla Sanabria L, Rodriguez ME, Cogno IS, Rumie Vittar NB, Pansa MF, Lamberti MJ, Rivarola VA: Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim Biophys Acta 1835, 2013:36-45.
  18. Krammer B: Vascular effects of photodynamic therapy. Anticancer Res 2001, 21:4271-4277.
  19. Vancikova Z: Principles of the photodynamic therapy and its impact on the immune system. Sb Lek 1998, 99:1-11.
  20. Nowis D, Stoklosa T, Legat M, Issat T, Jakobisiak M, Golab J: The influence of photodynamic therapy on the immune response. Photodiagnosis Photodyn Ther 2005, 2:283-298. https://doi.org/10.1016/S1572-1000(05)00098-0
  21. Detty MR, Gibson SL, Wagner SJ: Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 2004, 47:3897-3915. https://doi.org/10.1021/jm040074b
  22. O'Connor AE, Gallagher WM, Byrne AT: Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009, 85:1053-1074. https://doi.org/10.1111/j.1751-1097.2009.00585.x
  23. Ethirajan M, Chen Y, Joshi P, Pandey RK: The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 2011, 40:340-362. https://doi.org/10.1039/B915149B
  24. Daicoviciu D, Filip A, Ion RM, Clichici S, Decea N, Muresan A: Oxidative photodamage induced by photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour-bearing rats. Folia Biol 2011, 57:12-19.
  25. Pandey RK, Bellnier DA, Smith KM, Dougherty TJ: Chlorin and porphyrin derivatives as potential photosensitizers in photodynamic therapy. Photochem Photobiol 1991, 53:65-72. https://doi.org/10.1111/j.1751-1097.1991.tb08468.x
  26. Spikes JD: Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol 1986, 43:691-699. https://doi.org/10.1111/j.1751-1097.1986.tb05648.x
  27. Moeno S, Krause RW, Ermilov EA, Kuzyniak W, Hopfner M: Synthesis and characterization of novel zinc phthalocyanines as potential photosensitizers for photodynamic therapy of cancers. Photochem Photobiol Sci 2014, 13:963-970. https://doi.org/10.1039/c3pp50393c
  28. Durmus M, Ahsen V: Water-soluble cationic gallium(III) and indium(III) phthalocyanines for photodynamic therapy. J Inorg Biochem 2010, 104:297-309. https://doi.org/10.1016/j.jinorgbio.2009.12.011
  29. Kreimer-Birnbaum M: Modified porphyrins, chlorins, phthalocyanines, and purpurins: second-generation photosensitizers for photodynamic therapy. Semin Hematol 1989, 26:157-173.
  30. O'Neal WG, Roberts WP, Ghosh I, Wang H, Jacobi PA: Studies in chlorin chemistry. 3. A practical synthesis of c, d-ring symmetric chlorins of potential utility in photodynamic therapy. J Org Chem 2006, 71:3472-3480. https://doi.org/10.1021/jo060041z
  31. Vrouenraets MB, Visser GW, Snow GB, van Dongen GA: Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 2003, 23:505-522.
  32. Liebmann J, Cook JA, Mitchell JB: Cremophor EL, solvent for paclitaxel, and toxicity. Lancet 1993, 342:1428.
  33. Gelderblom H, Verweij J, Nooter K, Sparreboom A: Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001, 37:1590-1598. https://doi.org/10.1016/S0959-8049(01)00171-X
  34. Derycke AS, de Witte PA: Liposomes for photodynamic therapy. Adv Drug Deliv Rev 2004, 56:17-30. https://doi.org/10.1016/j.addr.2003.07.014
  35. Broekgaarden M, de Kroon AI, Gulik TM, Heger M: Development and in vitro proof-of-concept of interstitially targeted zinc- phthalocyanine liposomes for photodynamic therapy. Curr Med Chem 2013, 21:377-391. https://doi.org/10.2174/09298673113209990211
  36. Bovis MJ, Woodhams JH, Loizidou M, Scheglmann D, Bown SG, Macrobert AJ: Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy. J Control Release 2012, 157:196-205. https://doi.org/10.1016/j.jconrel.2011.09.085
  37. Ricci-Junior E, Marchetti JM: Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use. J Microencapsul 2006, 23:523-538. https://doi.org/10.1080/02652040600775525
  38. Ricci-Junior E, Marchetti JM: Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm 2006, 310:187-195. https://doi.org/10.1016/j.ijpharm.2005.10.048
  39. Chatterjee DK, Fong LS, Zhang Y: Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 2008, 60:1627-1637. https://doi.org/10.1016/j.addr.2008.08.003
  40. Lee YE, Kopelman R: Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol 2011, 726:151-178. https://doi.org/10.1007/978-1-61779-052-2_11
  41. Chung CW, Chung KD, Jeong YI, Kang DH: 5-aminolevulinic acid-incorporated nanoparticles of methoxy poly(ethylene glycol)-chitosan copolymer for photodynamic therapy. Int J Nanomedicine 2013, 8:809-819.
  42. Taillefer J, Brasseur N, van Lier JE, Lenaerts V, Le Garrec D, Leroux JC: In-vitro and in-vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J Pharmacy Pharmacol 2001, 53:155-166. https://doi.org/10.1211/0022357011775352
  43. Gibot L, Lemelle A, Till U, Moukarzel B, Mingotaud AF, Pimienta V, Saint-Aguet P, Rols MP, Gaucher M, Violleau F, Chassenieux C, Vicendo P: Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation. Biomacromolecules 2014, 15:1443-1455. https://doi.org/10.1021/bm5000407
  44. Koo H, Lee H, Lee S, Min KH, Kim MS, Lee DS, Choi Y, Kwon IC, Kim K, Jeong SY: In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun (Camb) 2010, 46:5668-5670. https://doi.org/10.1039/c0cc01413c
  45. van Nostrum CF: Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev 2004, 56:9-16. https://doi.org/10.1016/j.addr.2003.07.013
  46. Maeda H: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001, 41:189-207. https://doi.org/10.1016/S0065-2571(00)00013-3
  47. Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K: Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 2014, 9:2539-2555.
  48. Li F, Bae BC, Na K: Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Bioconjug Chem 2010, 21:1312-1320. https://doi.org/10.1021/bc100116v
  49. Bae BC, Na K: Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials 2010, 31:6325-6335. https://doi.org/10.1016/j.biomaterials.2010.04.030
  50. Li L, Bae BC, Tran TH, Yoon KH, Na K, Huh KM: Self-quenchable biofunctional nanoparticles of heparin-folate-photosensitizer conjugates for photodynamic therapy. Carbohyd Polym 2011, 86:708-715. https://doi.org/10.1016/j.carbpol.2011.05.011
  51. Oh IH, Min HS, Li L, Tran TH, Lee YK, Kwon IC, Choi K, Kim K, Huh KM: Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials 2013, 34:6454-6463. https://doi.org/10.1016/j.biomaterials.2013.05.017
  52. Kim WL, Cho H, Li L, Kang HC, Huh KM: Biarmed poly(ethylene glycol)-(pheophorbide a)2 conjugate as a bioactivatable delivery carrier for photodynamic therapy. Biomacromolecules 2014, 15:2224-2234. https://doi.org/10.1021/bm5003619
  53. Park W, Park SJ, Na K: The controlled photoactivity of nanoparticles derived from ionic interactions between a water soluble polymeric photosensitizer and polysaccharide quencher. Biomaterials 2011, 32:8261-8270. https://doi.org/10.1016/j.biomaterials.2011.07.023
  54. Li L, Nurunnabi M, Nafiujjaman M, Lee YK, Huh KM: GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. J Control Release 2013, 171:241-250. https://doi.org/10.1016/j.jconrel.2013.07.002
  55. Li L, Md N, Md N, Jeong YY, Lee YK, Huh KM: A photosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy. J Mater Chem B 2014, 2:2929-2937. https://doi.org/10.1039/c4tb00181h
  56. Matsumura Y, Maeda H: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986, 46:6387-6392.
  57. Maeda H, Matsumura Y: Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 1989, 6:193-210.
  58. Ben-Dror S, Bronshtein I, Wiehe A, Roder B, Senge MO, Ehrenberg B: On the correlation between hydrophobicity, liposome binding and cellular uptake of porphyrin sensitizers. Photochem Photobiol 2006, 82:695-701. https://doi.org/10.1562/2005-09-01-RA-669
  59. Love WG, Duk S, Biolo R, Jori G, Taylor PW: Liposome-mediated delivery of photosensitizers: localization of zinc (II)-phthalocyanine within implanted tumors after intravenous administration. Photochem Photobiol 1996, 63:656-661. https://doi.org/10.1111/j.1751-1097.1996.tb05670.x
  60. Casas A, Batlle A: Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy. Curr Med Chem 2006, 13:1157-1168. https://doi.org/10.2174/092986706776360888
  61. Richter AM, Waterfield E, Jain AK, Canaan AJ, Allison BA, Levy JG: Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol 1993, 57:1000-1006. https://doi.org/10.1111/j.1751-1097.1993.tb02962.x
  62. Namiki Y, Namiki T, Date M, Yanagihara K, Yashiro M, Takahashi H: Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome. Pharmacol Res Off J Ital Pharmacol Soc 2004, 50:65-76.
  63. Sibani SA, McCarron PA, Woolfson AD, Donnelly RF: Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms. Expert Opin Drug Deliv 2008, 5:1241-1254. https://doi.org/10.1517/17425240802444673
  64. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC: Polymeric nanoparticles for drug delivery. Methods Mol Biol 2010, 624:163-175. https://doi.org/10.1007/978-1-60761-609-2_11
  65. Veronese FM, Pasut G: PEGylation, successful approach to drug delivery. Drug Discov Today 2005, 10:1451-1458. https://doi.org/10.1016/S1359-6446(05)03575-0
  66. Jain A, Jain SK: PEGylation: an approach for drug delivery. A review. Crit Rev Ther Drug Carrier Syst 2008, 25:403-447. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v25.i5.10
  67. Kumari A, Yadav SK, Yadav SC: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 2010, 75:1-18. https://doi.org/10.1016/j.colsurfb.2009.09.001
  68. Allemann E, Brasseur N, Benrezzak O, Rousseau J, Kudrevich SV, Boyle RW, Leroux JC, Gurny R, Van Lier JE: PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharmacy Pharmacol 1995, 47:382-387. https://doi.org/10.1111/j.2042-7158.1995.tb05815.x
  69. Konan YN, Berton M, Gurny R, Allemann E: Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci 2003, 18:241-249. https://doi.org/10.1016/S0928-0987(03)00017-4
  70. Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allemann E: Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik eV 2003, 55:115-124.
  71. Aliabadi HM, Lavasanifar A: Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006, 3:139-162. https://doi.org/10.1517/17425247.3.1.139
  72. Nishiyama N, Kataoka K: Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006, 112:630-648. https://doi.org/10.1016/j.pharmthera.2006.05.006
  73. Li B, Moriyama EH, Li F, Jarvi MT, Allen C, Wilson BC: Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol 2007, 83:1505-1512. https://doi.org/10.1111/j.1751-1097.2007.00194.x
  74. Shieh MJ, Peng CL, Chiang WL, Wang CH, Hsu CY, Wang SJ, Lai PS: Reduced skin photosensitivity with meta-tetra(hydroxyphenyl)chlorinloaded micelles based on a poly(2-ethyl-2-oxazoline)-b-poly(d, l-lactide) diblock copolymer in vivo. Mol Pharm 2010, 7:1244-1253. https://doi.org/10.1021/mp100060v
  75. Knop K, Mingotaud AF, El-Akra N, Violleau F, Souchard JP: Monomeric pheophorbide(a)-containing poly(ethyleneglycol-b-epsilon-caprolactone) micelles for photodynamic therapy. Photochem Photobiol Sci 2009, 8:396-404. https://doi.org/10.1039/b811248g
  76. Li L, Cho H, Yoon KH, Kang HC, Huh KM: Antioxidant-photosensitizer dual-loaded polymeric micelles with controllable production of reactive oxygen species. Int J Pharm 2014, 471:339-348. https://doi.org/10.1016/j.ijpharm.2014.05.064
  77. Muthiah M, Park SH, Nurunnabi M, Lee J, Lee YK, Park H, Lee BI, Min JJ, Park IK: Intracellular delivery and activation of the genetically encoded photosensitizer Killer Red by quantum dots encapsulated in polymeric micelles. Colloid Surface B Biointerfaces 2014, 116:284-294. https://doi.org/10.1016/j.colsurfb.2014.01.001
  78. Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA: A genetically encoded photosensitizer. Nat Biotechnol 2006, 24:95-99. https://doi.org/10.1038/nbt1175
  79. Liao ZX, Li YC, Lu HM, Sung HW: A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials 2014, 35:500-508. https://doi.org/10.1016/j.biomaterials.2013.09.075
  80. Pletnev S, Gurskaya NG, Pletneva NV, Lukyanov KA, Chudakov DM, Martynov VI, Popov VO, Kovalchuk MV, Wlodawer A, Dauter Z, Pletnev V: Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. J Biol Chem 2009, 284:32028-32039. https://doi.org/10.1074/jbc.M109.054973
  81. Ryumina AP, Serebrovskaya EO, Shirmanova MV, Snopova LB, Kuznetsova MM, Turchin IV, Ignatova NI, Klementieva NV, Fradkov AF, Shakhov BE, Zagaynova EV, Lukyanov KA, Lukyanov SA: Flavoprotein miniSOG as a genetically encoded photosensitizer for cancer cells. Biochim Biophys Acta 1830, 2013:5059-5067.
  82. Verhille M, Couleaud P, Vanderesse R, Brault D, Barberi-Heyob M, Frochot C: Modulation of photosensitization processes for an improved targeted photodynamic therapy. Curr Med Chem 2010, 17:3925-3943. https://doi.org/10.2174/092986710793205453
  83. Lovell JF, Liu TWB, Chen J, Zheng G: Activatable Photosensitizers for Imaging and Therapy. Chem Rev 2010, 110:2839-2857. https://doi.org/10.1021/cr900236h
  84. Bugaj AM: Targeted photodynamic therapy-a promising strategy of tumor treatment. Photochem Photobiol Sci 2011, 10:1097-1109. https://doi.org/10.1039/c0pp00147c
  85. McCarthy JR, Weissleder R: Model systems for fluorescence and singlet oxygen quenching by metalloporphyrins. ChemMedChem 2007, 2:360-365. https://doi.org/10.1002/cmdc.200600244
  86. Lovell JF, Chen J, Jarvi MT, Cao WG, Allen AD, Liu Y, Tidwell TT, Wilson BC, Zheng G: FRET quenching of photosensitizer singlet oxygen generation. J Phys Chem B 2009, 113:3203-3211. https://doi.org/10.1021/jp810324v
  87. Lee SJ, Koo H, Lee DE, Min S, Lee S, Chen X, Choi Y, Leary JF, Park K, Jeong SY, Kwon IC, Kim K, Choi K: Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials 2011, 32:4021-4029. https://doi.org/10.1016/j.biomaterials.2011.02.009
  88. Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM: Glutathione levels in human tumors. Biomarkers 2012, 17:671-691. https://doi.org/10.3109/1354750X.2012.715672

Cited by

  1. Effect of diblock copolymer properties on the photophysical properties of dendrimer silicon phthalocyanine nanoconjugates vol.18, pp.7, 2015, https://doi.org/10.1007/s11051-016-3444-8
  2. Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy vol.6, pp.18, 2016, https://doi.org/10.1039/c5ra25650j
  3. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology vol.8, pp.25, 2015, https://doi.org/10.1039/c5nr08691d
  4. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications vol.20, pp.1, 2016, https://doi.org/10.1186/s40824-016-0081-3
  5. Self-Targeting, Immune Transparent Plasma Protein Coated Nanocomplex for Noninvasive Photothermal Anticancer Therapy vol.6, pp.14, 2015, https://doi.org/10.1002/adhm.201700181
  6. Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis vol.409, pp.6, 2015, https://doi.org/10.1007/s00216-016-0120-x
  7. Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin vol.295, pp.8, 2017, https://doi.org/10.1007/s00396-016-3992-6
  8. Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT) vol.21, pp.4, 2015, https://doi.org/10.1142/s1088424617300014
  9. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation vol.39, pp.6, 2015, https://doi.org/10.1177/1010428317706913
  10. Enhancing Photochemical Internalization of DOX through a Porphyrin-based Amphiphilic Block Copolymer vol.18, pp.12, 2017, https://doi.org/10.1021/acs.biomac.7b01037
  11. Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells vol.13, pp.6, 2015, https://doi.org/10.2217/nnm-2017-0292
  12. An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy against HER2-positive breast cancer vol.10, pp.21, 2018, https://doi.org/10.1039/c8nr01512k
  13. Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment vol.23, pp.8, 2015, https://doi.org/10.3390/molecules23081936
  14. Functional Polymer Nanocarriers for Photodynamic Therapy vol.11, pp.4, 2015, https://doi.org/10.3390/ph11040133
  15. Functionalized photosensitive gelatin nanoparticles for drug delivery application vol.30, pp.7, 2015, https://doi.org/10.1080/09205063.2019.1580664
  16. Stimulus Sensitive Smart Nanoplatforms: An Emerging Paradigm for the Treatment of Skin Diseases vol.16, pp.4, 2015, https://doi.org/10.2174/1567201816666190123125813
  17. GRP78‐Targeted HPMA Copolymer‐Photosensitizer Conjugate for Hyperthermia‐Induced Enhanced Uptake and Cytotoxicity in MCF‐7 Breast Cancer Cells vol.19, pp.7, 2015, https://doi.org/10.1002/mabi.201900032
  18. Multilayer thin films of Zinc (II) Phthalocyanine loaded Poly(D, L-lactide-co-glycolide) nanocapsules by layer-by-layer self assembly vol.6, pp.7, 2019, https://doi.org/10.1088/2053-1591/ab1278
  19. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment vol.96, pp.2, 2020, https://doi.org/10.1111/php.13209
  20. Synthesis, Characterization and Photodynamic Activity against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives vol.25, pp.7, 2015, https://doi.org/10.3390/molecules25071607
  21. In-Situ Synthesis of a Novel Bioresorbable Sodium Alginate/Hydroxyapatite-Calcium Pyrophosphate Nanocomposite as Bone Replacement vol.30, pp.5, 2020, https://doi.org/10.1007/s10904-019-01391-x
  22. Self-Quenched Polysaccharide Nanoparticles with a Reactive Oxygen Species-Sensitive Cascade for Enhanced Photodynamic Therapy vol.12, pp.25, 2015, https://doi.org/10.1021/acsami.0c06311
  23. Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer vol.7, pp.24, 2015, https://doi.org/10.1002/advs.202003584
  24. Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy vol.9, pp.None, 2015, https://doi.org/10.3389/fbioe.2021.783354
  25. Current applications of drug delivery nanosystems associated with antimicrobial photodynamic therapy for oral infections vol.592, pp.None, 2015, https://doi.org/10.1016/j.ijpharm.2020.120078
  26. Insights on the polypyrrole based nanoformulations for photodynamic therapy vol.25, pp.7, 2021, https://doi.org/10.1142/s1088424621300032
  27. Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy vol.11, pp.9, 2015, https://doi.org/10.3390/nano11092426