DOI QR코드

DOI QR Code

Nutritional strategy of early amino acid administration in very low birth weight infants

  • Lee, Byong Sop (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2014.10.14
  • Accepted : 2015.02.16
  • Published : 2015.03.10

Abstract

Relative to a fetus of the same gestational age, very low birth weight (VLBW) infants are more likely to be underfed and to undergo growth restriction during their early hospital stay. The current trend towards "early and aggressive" nutritional strategies in VLBW infants aims to overcome the early nutritional deficiency and thereby boost postnatal catch-up growth, simultaneously improving long-term neurodevelopmental outcomes. Although the minimum starting amino acid (AA) dose to prevent negative nitrogen balance is well established, the upper limit and the rate of increase of early AA doses are controversial. Most randomized controlled trials show that early and high-dose (target, 3.5 to 4.9 g/kg/day) AA regimens, with or without high nonprotein calories, do not improve long-term growth and neurodevelopment. High-dose AA supplementation may lead to early metabolic disturbances and excessive or disproportionate plasma AA levels, particularly in infants of very low gestational age. Further large studies are needed to clarify the optimal strategy for early administration of parenteral AA doses in VLBW infants.

Keywords

References

  1. Kim ES, Sohn JA, Lee EH, Choi EJ, Lee HJ, Lee JA, et al. Extrauterine growth restriction in very low birth weight infants. J Korean Soc Neonatol 2010:1753-63.
  2. Lemons JA, Bauer CR, Oh W, Korones SB, Papile LA, Stoll BJ, et al. Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 2001;107:E1. https://doi.org/10.1542/peds.107.1.e1
  3. Hack M, Schluchter M, Cartar L, Rahman M, Cuttler L, Borawski E. Growth of very low birth weight infants to age 20 years. Pediatrics 2003;112(1 Pt 1):e30-8. https://doi.org/10.1542/peds.112.1.e30
  4. Saigal S, Stoskopf B, Streiner D, Paneth N, Pinelli J, Boyle M. Growth trajectories of extremely low birth weight infants from birth to young adulthood: a longitudinal, population-based study. Pediatr Res 2006;60:751-8. https://doi.org/10.1203/01.pdr.0000246201.93662.8e
  5. Casey PH, Whiteside-Mansell L, Barrett K, Bradley RH, Gargus R. Impact of prenatal and/or postnatal growth problems in low birth weight preterm infants on school-age outcomes: an 8-year longitudinal evaluation. Pediatrics 2006;118:1078-86. https://doi.org/10.1542/peds.2006-0361
  6. American Academy of Pediatrics Committee on Nutrition: Nutritional needs of low-birth-weight infants. Pediatrics 1985;75:976-86.
  7. Kashyap S, Schulze KF, Ramakrishnan R, Dell RB, Heird WC. Evaluation of a mathematical model for predicting the relationship between protein and energy intakes of low-birth-weight infants and the rate and composition of weight gain. Pediatr Res 1994;35: 704-12. https://doi.org/10.1203/00006450-199406000-00017
  8. Ziegler EE, Thureen PJ, Carlson SJ. Aggressive nutrition of the very low birthweight infant. Clin Perinatol 2002;29:225-44. https://doi.org/10.1016/S0095-5108(02)00007-6
  9. Gudinchet F, Schutz Y, Micheli JL, Stettler E, Jequier E. Metabolic cost of growth in very low-birth-weight infants. Pediatr Res 1982;16:1025-30. https://doi.org/10.1203/00006450-198212000-00012
  10. Baumann MU, Deborde S, Illsley NP. Placental glucose transfer and fetal growth. Endocrine 2002;19:13-22. https://doi.org/10.1385/ENDO:19:1:13
  11. McClellan R, Novak D. Fetal nutrition: how we become what we are. J Pediatr Gastroenterol Nutr 2001;33:233-44. https://doi.org/10.1097/00005176-200109000-00002
  12. Sparks JW, Girard JR, Battaglia FC. An estimate of the caloric requirements of the human fetus. Biol Neonate 1980;38:113-9. https://doi.org/10.1159/000241351
  13. Poindexter BB, Denne SC. Parenteral nutrition. In: Gleason CA, Devaskar S. Avery's disease of the newborn. 9th ed. Philadelphia: Saunders; 2012;963-71.
  14. Poindexter BB, Denne SC. Nutrition and metabolism in the highrisk neonate. In: Martin RJ, Fanaroff AA, Walsh MC, editors. Fanaroff and Martin's neonatal perinatal medicine: diseases of the fetus and infant. 9th ed. St. Louis: Elsevier; 2011;643-68.
  15. Murdock N, Crighton A, Nelson LM, Forsyth JS. Low birthweight infants and total parenteral nutrition immediately after birth. II. Randomised study of biochemical tolerance of intravenous glucose, amino acids, and lipid. Arch Dis Child Fetal Neonatal Ed 1995;73:F8-12. https://doi.org/10.1136/fn.73.1.F8
  16. Uthaya S, Thomas EL, Hamilton G, Dore CJ, Bell J, Modi N. Altered adiposity after extremely preterm birth. Pediatr Res 2005;57:211-5. https://doi.org/10.1203/01.PDR.0000148284.58934.1C
  17. Griffin IJ, Cooke RJ. Development of whole body adiposity in preterm infants. Early Hum Dev 2012;88 Suppl 1:S19-24.
  18. Ziegler EE. Protein requirements of very low birth weight infants. J Pediatr Gastroenterol Nutr 2007;45 Suppl 3:S170-4. https://doi.org/10.1097/01.mpg.0000302966.75620.91
  19. De Curtis M, Rigo J. The nutrition of preterm infants. Early Hum Dev 2012;88 Suppl 1:S5-7. https://doi.org/10.1016/j.earlhumdev.2011.12.020
  20. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr 2010;50:85-91. https://doi.org/10.1097/MPG.0b013e3181adaee0
  21. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr 2013;13:59. https://doi.org/10.1186/1471-2431-13-59
  22. Fenton TR. A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. BMC Pediatr 2003;3:13. https://doi.org/10.1186/1471-2431-3-13
  23. Diekmann M, Genzel-Boroviczeny O, Zoppelli L, von Poblotzki M. Postnatal growth curves for extremely low birth weight infants with early enteral nutrition. Eur J Pediatr 2005;164:714-23. https://doi.org/10.1007/s00431-005-1756-2
  24. Ehrenkranz RA, Younes N, Lemons JA, Fanaroff AA, Donovan EF, Wright LL, et al. Longitudinal growth of hospitalized very low birth weight infants. Pediatrics 1999;104(2 Pt 1):280-9. https://doi.org/10.1542/peds.104.2.280
  25. Pauls J, Bauer K, Versmold H. Postnatal body weight curves for infants below 1000 g birth weight receiving early enteral and parenteral nutrition. Eur J Pediatr 1998;157:416-21. https://doi.org/10.1007/s004310050842
  26. Sherry B, Mei Z, Grummer-Strawn L, Dietz WH. Evaluation of and recommendations for growth references for very low birth weight (< or =1500 grams) infants in the United States. Pediatrics 2003;111(4 Pt 1):750-8. https://doi.org/10.1542/peds.111.4.750
  27. Latal-Hajnal B, von Siebenthal K, Kovari H, Bucher HU, Largo RH. Postnatal growth in VLBW infants: significant association with neurodevelopmental outcome. J Pediatr 2003;143:163-70.
  28. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002;31:1235-9. https://doi.org/10.1093/ije/31.6.1235
  29. Rogers LK, Velten M. Maternal inflammation, growth retardation, and preterm birth: insights into adult cardiovascular disease. Life Sci 2011;89:417-21. https://doi.org/10.1016/j.lfs.2011.07.017
  30. Denne SC, Poindexter BB. Evidence supporting early nutritional support with parenteral amino acid infusion. Semin Perinatol 2007;31:56-60. https://doi.org/10.1053/j.semperi.2007.02.005
  31. Embleton ND. Optimal protein and energy intakes in preterm infants. Early Hum Dev 2007;83:831-7. https://doi.org/10.1016/j.earlhumdev.2007.10.001
  32. Denne SC, Karn CA, Ahlrichs JA, Dorotheo AR, Wang J, Liechty EA. Proteolysis and phenylalanine hydroxylation in response to parenteral nutrition in extremely premature and normal newborns. J Clin Invest 1996;97:746-54. https://doi.org/10.1172/JCI118473
  33. Blanco CL, Falck A, Green BK, Cornell JE, Gong AK. Metabolic responses to early and high protein supplementation in a randomized trial evaluating the prevention of hyperkalemia in extremely low birth weight infants. J Pediatr 2008;153:535-40. https://doi.org/10.1016/j.jpeds.2008.04.059
  34. te Braake FW, van den Akker CH, Wattimena DJ, Huijmans JG, van Goudoever JB. Amino acid administration to premature infants directly after birth. J Pediatr 2005;147:457-61. https://doi.org/10.1016/j.jpeds.2005.05.038
  35. Yang S, Lee BS, Park HW, Choi YS, Chung SH, Kim JH, et al. Effect of high vs standard early parenteral amino acid supplementation on the growth outcomes in very low birth weight infants. JPEN J Parenter Enteral Nutr 2013;37:327-34. https://doi.org/10.1177/0148607112456400
  36. Bonsante F, Iacobelli S, Chantegret C, Martin D, Gouyon JB. The effect of parenteral nitrogen and energy intake on electrolyte balance in the preterm infant. Eur J Clin Nutr 2011;65:1088-93. https://doi.org/10.1038/ejcn.2011.79
  37. van Goudoever JB, Sulkers EJ, Lafeber HN, Sauer PJ. Short-term growth and substrate use in very-low-birth-weight infants fed formulas with different energy contents. Am J Clin Nutr 2000;71: 816-21. https://doi.org/10.1093/ajcn/71.3.816
  38. Jadhav P, Parimi PS, Kalhan SC. Parenteral amino acid and metabolic acidosis in premature infants. JPEN J Parenter Enteral Nutr 2007;31:278-83. https://doi.org/10.1177/0148607107031004278
  39. Porcelli Jr PJ, Sisk PM. Increased parenteral amino acid administration to extremely low-birth-weight infants during early postnatal life. J Pediatr Gastroenterol Nutr 2002;34:174-9. https://doi.org/10.1097/00005176-200202000-00013
  40. Bulbul A, Okan F, Bulbul L, Nuhoglu A. Effect of low versus high early parenteral nutrition on plasma amino acid profiles in very low birth-weight infants. J Matern Fetal Neonatal Med 2012; 25:770-6. https://doi.org/10.3109/14767058.2011.589873
  41. Ridout E, Melara D, Rottinghaus S, Thureen PJ. Blood urea nitrogen concentration as a marker of amino-acid intolerance in neonates with birth weight less than 1250 g. J Perinatol 2005; 25:130-3. https://doi.org/10.1038/sj.jp.7211215
  42. Thureen PJ, Melara D, Fennessey PV, Hay WW Jr. Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res 2003;53: 24-32. https://doi.org/10.1203/00006450-200301000-00008
  43. Bonsante F, Iacobelli S, Latorre G, Rigo J, De Felice C, Robillard PY, et al. Initial amino acid intake influences phosphorus and calcium homeostasis in preterm infants: it is time to change the composition of the early parenteral nutrition. PLoS One 2013; 8:e72880. https://doi.org/10.1371/journal.pone.0072880
  44. Vachharajani AJ, Mathur AM, Rao R. Metabolic bone disease of prematurity. Neoreviews 2009;10:e402-11.
  45. Ehrenkranz RA, Das A, Wrage LA, Poindexter BB, Higgins RD, Stoll BJ, et al. Early nutrition mediates the influence of severity of illness on extremely LBW infants. Pediatr Res 2011;69:522-9. https://doi.org/10.1203/PDR.0b013e318217f4f1
  46. Poindexter BB, Ehrenkranz RA, Stoll BJ, Wright LL, Poole WK, Oh W, et al. Parenteral glutamine supplementation does not reduce the risk of mortality or late-onset sepsis in extremely low birth weight infants. Pediatrics 2004;113:1209-15. https://doi.org/10.1542/peds.113.5.1209
  47. Massaro D, Massaro GD. Hunger disease and pulmonary alveoli. Am J Respir Crit Care Med 2004;170:723-4. https://doi.org/10.1164/rccm.2408002
  48. Massaro D, Massaro GD, Baras A, Hoffman EP, Clerch LB. Calorie-related rapid onset of alveolar loss, regeneration, and changes in mouse lung gene expression. Am J Physiol Lung Cell Mol Physiol 2004;286:L896-906. https://doi.org/10.1152/ajplung.00333.2003
  49. Blanco CL, Gong AK, Schoolfield J, Green BK, Daniels W, Liechty EA, et al. Impact of early and high amino acid supplementation on ELBW infants at 2 years. J Pediatr Gastroenterol Nutr 2012;54:601-7. https://doi.org/10.1097/MPG.0b013e31824887a0
  50. Morgan C, McGowan P, Herwitker S, Hart AE, Turner MA. Postnatal head growth in preterm infants: a randomized controlled parenteral nutrition study. Pediatrics 2014;133:e120-8. https://doi.org/10.1542/peds.2013-2207
  51. Tan MJ, Cooke RW. Improving head growth in very preterm infants--a randomised controlled trial I: neonatal outcomes. Arch Dis Child Fetal Neonatal Ed 2008;93:F337-41. https://doi.org/10.1136/adc.2007.124230
  52. Wemhoner A, Ortner D, Tschirch E, Strasak A, Rudiger M. Nutrition of preterm infants in relation to bronchopulmonary dysplasia. BMC Pulm Med 2011;11:7. https://doi.org/10.1186/1471-2466-11-7
  53. Richard M, Ramful D, Robillard PY, Mussard C, Loumouamou Y, Ogier M, et al. Prevalence, severity, and predictors of bronchopulmonary dysplasia in a cohort of very preterm infants. Arch Pediatr 2013;20:928-37. https://doi.org/10.1016/j.arcped.2013.05.002
  54. Bell EF, Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2008;(1):CD000503.
  55. Oh W, Poindexter BB, Perritt R, Lemons JA, Bauer CR, Ehrenkranz RA, et al. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr 2005;147:786-90. https://doi.org/10.1016/j.jpeds.2005.06.039
  56. Kim SM, Lee EY, Chen J, Ringer SA. Improved care and growth outcomes by using hybrid humidified incubators in very preterm infants. Pediatrics 2010;125:e137-45. https://doi.org/10.1542/peds.2008-2997
  57. Burattini I, Bellagamba MP, Spagnoli C, D'Ascenzo R, Mazzoni N, Peretti A, et al. Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: a randomized clinical trial. J Pediatr 2013;163:1278-82.e1.
  58. Clark RH, Chace DH, Spitzer AR; Pediatrix Amino Acid Study Group. Effects of two different doses of amino acid supplementation on growth and blood amino acid levels in premature neonates admitted to the neonatal intensive care unit: a randomized, controlled trial. Pediatrics 2007;120:1286-96. https://doi.org/10.1542/peds.2007-0545
  59. Tan M, Abernethy L, Cooke R. Improving head growth in preterm infants--a randomised controlled trial II: MRI and developmental outcomes in the first year. Arch Dis Child Fetal Neonatal Ed 2008; 93:F342-6. https://doi.org/10.1136/adc.2007.124255
  60. Vlaardingerbroek H, Vermeulen MJ, Rook D, van den Akker CH, Dorst K, Wattimena JL, et al. Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants. J Pediatr 2013;163:638-44.e1-5. https://doi.org/10.1016/j.jpeds.2013.03.059
  61. Stead JD, Neal C, Meng F, Wang Y, Evans S, Vazquez DM, et al. Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. J Neurosci 2006;26:345-53. https://doi.org/10.1523/JNEUROSCI.2755-05.2006
  62. Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 2007;85:614S-620S.
  63. Blanco CL, Gong AK, Green BK, Falck A, Schoolfield J, Liechty EA. Early changes in plasma amino acid concentrations during aggressive nutritional therapy in extremely low birth weight infants. J Pediatr 2011;158:543-8.e1.
  64. Poindexter BB, Ehrenkranz RA, Stoll BJ, Koch MA, Wright LL, Oh W, et al. Effect of parenteral glutamine supplementation on plasma amino acid concentrations in extremely low-birth-weight infants. Am J Clin Nutr 2003;77:737-43. https://doi.org/10.1093/ajcn/77.3.737
  65. Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr 1984;4:409-54. https://doi.org/10.1146/annurev.nu.04.070184.002205
  66. Saenz de Pipaon M, Quero J, Wattimena DJ, Sauer PJ. Effect of two amino acid solutions on leucine turnover in preterm infants. Biol Neonate 2005;87:236-41. https://doi.org/10.1159/000083389

Cited by

  1. Implementation of a Nutrition Program Reduced Post-Discharge Growth Restriction in Thai Very Low Birth Weight Preterm Infants vol.8, pp.12, 2016, https://doi.org/10.3390/nu8120820