DOI QR코드

DOI QR Code

Lactoferrin Combined with Retinoic Acid Stimulates B1 Cells to Express IgA Isotype and Gut-homing Molecules

  • Kang, Seong-Ho (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Jin, Bo-Ra (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Kim, Hyeon-Jin (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Seo, Goo-Young (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Jang, Young-Saeng (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Kim, Sun-Jin (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • An, Sun-Jin (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Park, Seok-Rae (Department of Microbiology, College of Medicine, Konyang University) ;
  • Kim, Woan-Sub (Department of Animal Life and Environmental Science, College of Agriculture and Life Science, Hankyong National University) ;
  • Kim, Pyeung-Hyeun (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University)
  • 투고 : 2014.11.22
  • 심사 : 2015.01.26
  • 발행 : 2015.02.28

초록

It is well established that TGF-${\beta}1$ and retinoic acid (RA) cause IgA isotype switching in mice. We recently found that lactoferrin (LF) also has an activity of IgA isotype switching in spleen B cells. The present study explored the effect of LF on the Ig production by mouse peritoneal B cells. LF, like TGF-${\beta}1$, substantially increased IgA production in peritoneal B1 cells but little in peritoneal B2 cells. In contrast, LF increased IgG2b production in peritoneal B2 cells much more strongly than in peritoneal B1 cells. LF in combination with RA further enhanced the IgA production and, interestingly, this enhancement was restricted to IgA isotype and B1 cells. Similarly, the combination of the two molecules also led to expression of gut homing molecules ${\alpha}4{\beta}7$ and CCR9 on peritoneal B1 cells, but not on peritoneal B2 cells. Thus, these results indicate that LF and RA can contribute to gut IgA response through stimulating IgA isotype switching and expression of gut-homing molecules in peritoneal B1 cells.

키워드

참고문헌

  1. Hayakawa, K., R. R. Hardy, D. R. Parks, and L. A. Herzenberg. 1983. The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. J. Exp. Med. 157: 202-218. https://doi.org/10.1084/jem.157.1.202
  2. Gray, D., I. C. MacLennan, H. Bazin, and M. Khan. 1982. Migrant $mu^+$ $delta^+$ and static $mu^+$ $delta^-$ B lymphocyte subsets. Eur. J. Immunol. 12: 564-569. https://doi.org/10.1002/eji.1830120707
  3. Timens, W., A. Boes, and S. Poppema. 1989. Human marginal zone B cells are not an activated B cell subset: strong expression of CD21 as a putative mediator for rapid B cell activation. Eur. J. Immunol. 19: 2163-2166. https://doi.org/10.1002/eji.1830191129
  4. Cerutti, A., M. Cols, and I. Puga. 2013. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13: 118-132. https://doi.org/10.1038/nri3383
  5. Marcos, M. A., F. Huetz, P. Pereira, J. L. Andreu, A. Martinez, and A. Coutinho. 1989. Further evidence for coelomic-associated B lymphocytes. Eur. J. Immunol. 19: 2031-2035. https://doi.org/10.1002/eji.1830191110
  6. Kroese, F. G., W. A. Ammerlaan, and G. J. Deenen. 1992. Location and function of B-cell lineages. Ann. N. Y. Acad. Sci. 651: 44-58. https://doi.org/10.1111/j.1749-6632.1992.tb24592.x
  7. Liu, Y. J., J. Zhang, P. J. Lane, E. Y. Chan, and I. C. MacLennan. 1991. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21: 2951-2962. https://doi.org/10.1002/eji.1830211209
  8. Liu, Y. J., G. D. Johnson, J. Gordon, and I. C. MacLennan. 1992. Germinal centres in T-cell-dependent antibody responses. Immunol. Today 13: 17-21. https://doi.org/10.1016/0167-5699(92)90199-H
  9. Martin, F., A. M. Oliver, and J. F. Kearney. 2001. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14: 617-629. https://doi.org/10.1016/S1074-7613(01)00129-7
  10. Baumgarth, N. 2011. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11: 34-46. https://doi.org/10.1038/nri2901
  11. Kearney, J. F. 2005. Innate-like B cells. Springer Semin. Immunopathol. 26: 377-383.
  12. Macpherson, A. J., K. D. McCoy, F. E. Johansen, and P. Brandtzaeg. 2008. The immune geography of IgA induction and function. Mucosal Immunol. 1: 11-22. https://doi.org/10.1038/mi.2007.6
  13. Fagarasan, S., S. Kawamoto, O. Kanagawa, and K. Suzuki. 2010. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28: 243-273. https://doi.org/10.1146/annurev-immunol-030409-101314
  14. Cerutti, A., and M. Rescigno. 2008. The biology of intestinal immunoglobulin A responses. Immunity 28: 740-750. https://doi.org/10.1016/j.immuni.2008.05.001
  15. Suzuki, K., M. Maruya, S. Kawamoto, and S. Fagarasan. 2010. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol. Rev. 237: 180-190. https://doi.org/10.1111/j.1600-065X.2010.00941.x
  16. Kroese, F. G., E. C. Butcher, A. M. Stall, P. A. Lalor, S. Adams, and L. A. Herzenberg. 1989. Many of the IgA producing plasma cells in murine gut are derived from self-replenish ing precursors in the peritoneal cavity. Int. Immunol. 1: 75-84. https://doi.org/10.1093/intimm/1.1.75
  17. Kroese, F. G., E. C. Butcher, A. M. Stall, and L. A. Herzenberg. 1989. A major peritoneal reservoir of precursors for intestinal IgA plasma cells. Immunol. Invest 18: 47-58. https://doi.org/10.3109/08820138909112226
  18. Bos, N. A., J. C. Bun, S. H. Popma, E. R. Cebra, G. J. Deenen, M. J. van der Cammen, F. G. Kroese, and J. J. Cebra. 1996. Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect. Immun. 64: 616-623.
  19. Coffman, R. L., D. A. Lebman, and B. Shrader. 1989. Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J. Exp. Med. 170: 1039-1044. https://doi.org/10.1084/jem.170.3.1039
  20. Sonoda, E., R. Matsumoto, Y. Hitoshi, T. Ishii, M. Sugimoto, S. Araki, A. Tominaga, N. Yamaguchi, and K. Takatsu. 1989. Transforming growth factor beta induces IgA production and acts additively with interleukin 5 for IgA production. J. Exp. Med. 170: 1415-1420. https://doi.org/10.1084/jem.170.4.1415
  21. Kim, P. H., and M. F. Kagnoff. 1990. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J. Immunol. 145: 3773-3778.
  22. Tokuyama, H., and Y. Tokuyama. 1993. Retinoids enhance IgA production by lipopolysaccharide-stimulated murine spleen cells. Cell Immunol. 150: 353-363. https://doi.org/10.1006/cimm.1993.1203
  23. Tokuyama, H., and Y. Tokuyama. 1999. The regulatory effects of all-trans-retinoic acid on isotype switching: retinoic acid induces IgA switch rearrangement in cooperation with IL-5 and inhibits IgG1 switching. Cell Immunol. 192: 41-47. https://doi.org/10.1006/cimm.1998.1438
  24. Seo, G. Y., Y. S. Jang, H. A. Kim, M. R. Lee, M. H. Park, S. R. Park, J. M. Lee, J. Choe, and P. H. Kim. 2013. Retinoic acid, acting as a highly specific IgA isotype switch factor, cooperates with TGF-beta1 to enhance the overall IgA response. J. Leukoc. Biol. 94: 325-335. https://doi.org/10.1189/jlb.0313128
  25. Kaminski, D. A., and J. Stavnezer. 2006. Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/ B2 B cells. J. Immunol. 177: 6025-6029. https://doi.org/10.4049/jimmunol.177.9.6025
  26. Roy, B., A. M. Brennecke, S. Agarwal, M. Krey, S. Duber, and S. Weiss. 2013. An intrinsic propensity of murine peritoneal B1b cells to switch to IgA in presence of TGF-beta and retinoic acid. PLoS One 8: e82121. https://doi.org/10.1371/journal.pone.0082121
  27. Hart, A. L., S. C. Ng, E. Mann, H. O. Al-Hassi, D. Bernardo, and S. C. Knight. 2010. Homing of immune cells: role in homeostasis and intestinal inflammation. Inflamm. Bowel. Dis. 16: 1969-1977. https://doi.org/10.1002/ibd.21304
  28. Mora, J. R., M. Iwata, B. Eksteen, S. Y. Song, T. Junt, B. Senman, K. L. Otipoby, A. Yokota, H. Takeuchi, P. Ricciardi-Castagnoli, K. Rajewsky, D. H. Adams, and U. H. von Andrian. 2006. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314: 1157-1160. https://doi.org/10.1126/science.1132742
  29. Lonnerdal, B. 2009. Nutritional roles of lactoferrin. Curr. Opin. Clin. Nutr. Metab. Care 12: 293-297. https://doi.org/10.1097/MCO.0b013e328328d13e
  30. Legrand, D., E. Elass, M. Carpentier, and J. Mazurier. 2006. Interactions of lactoferrin with cells involved in immune function. Biochem. Cell Biol. 84: 282-290. https://doi.org/10.1139/o06-045
  31. Jang, Y. S., G. Y. Seo, J. M. Lee, H. Y. Seo, H. J. Han, S. J. Kim, B. R. Jin, H. J. Kim, S. R. Park, K. J. Rhee, W. S. Kim, and P. H. Kim. 2014. Lactoferrin causes IgA and IgG2b isotype switching through betaglycan binding and activation of canonical TGF-beta signaling. Mucosal Immunol. doi:10.1038/mi.2014.121.
  32. Park, S. R., J. H. Lee, and P. H. Kim. 2001. Smad3 and Smad4 mediate transforming growth factor-beta1-induced IgA expression in murine B lymphocytes. Eur. J. Immunol. 31: 1706-1715. https://doi.org/10.1002/1521-4141(200106)31:6<1706::AID-IMMU1706>3.0.CO;2-Z
  33. Macpherson, A. J., D. Gatto, E. Sainsbury, G. R. Harriman, H. Hengartner, and R. M. Zinkernagel. 2000. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288: 2222-2226. https://doi.org/10.1126/science.288.5474.2222
  34. Mora, J. R., and U. H. von Andrian. 2009. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin. Immunol. 21: 28-35. https://doi.org/10.1016/j.smim.2008.08.002
  35. Iwata, M., A. Hirakiyama, Y. Eshima, H. Kagechika, C. Kato, and S. Y. Song. 2004. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21: 527-538. https://doi.org/10.1016/j.immuni.2004.08.011

피인용 문헌

  1. Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/3067126
  2. Alterations induced in the ileum of mice upon inoculation with different species of Leishmania: a preliminary study vol.51, pp.4, 2018, https://doi.org/10.1590/0037-8682-0348-2017
  3. Antibacterial and immunomodulatory activities of bovine lactoferrin against Escherichia coli O157:H7 infections in cattle vol.31, pp.3, 2018, https://doi.org/10.1007/s10534-018-0082-x
  4. Retinoic Acid, Leaky Gut, and Autoimmune Diseases vol.10, pp.8, 2015, https://doi.org/10.3390/nu10081016
  5. Specialized immune responses in the peritoneal cavity and omentum vol.109, pp.4, 2015, https://doi.org/10.1002/jlb.5mir0720-271rr