DOI QR코드

DOI QR Code

Regulation of Intestinal Immune System by Dendritic Cells

  • Ko, Hyun-Jeong (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University) ;
  • Chang, Sun-Young (Laboratory of Microbiology, College of Pharmacy, Ajou University)
  • Received : 2014.11.25
  • Accepted : 2015.01.08
  • Published : 2015.02.28

Abstract

Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell.

Keywords

References

  1. Murphy, K., P. Travers, M. Walport, and C. Janeway. 2012. Janeway's immunobiology. Garland Science, New York. p. 466-468.
  2. Ciorba, M. A., T. E. Riehl, M. S. Rao, C. Moon, X. Ee, G. M. Nava, M. R. Walker, J. M. Marinshaw, T. S. Stappenbeck, and W. F. Stenson. 2012. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase- 2-dependent manner. Gut 61: 829-838. https://doi.org/10.1136/gutjnl-2011-300367
  3. Fukuda, S., H. Toh, K. Hase, K. Oshima, Y. Nakanishi, K. Yoshimura, T. Tobe, J. M. Clarke, D. L. Topping, T. Suzuki, T. D. Taylor, K. Itoh, J. Kikuchi, H. Morita, M. Hattori, and H. Ohno. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469: 543-547.
  4. Pickard, J. M., C. F. Maurice, M. A. Kinnebrew, M. C. Abt, D. Schenten, T. V. Golovkina, S. R. Bogatyrev, R. F. Ismagilov, E. G. Pamer, P. J. Turnbaugh, and A. V. Chervonsky. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514: 638-641. https://doi.org/10.1038/nature13823
  5. Denning, T. L., B. A. Norris, O. Medina-Contreras, S. Manicassamy, D. Geem, R. Madan, C. L. Karp, and B. Pulendran. 2011. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 187: 733-747. https://doi.org/10.4049/jimmunol.1002701
  6. Varol, C., A. Vallon-Eberhard, E. Elinav, T. Aychek, Y. Shapira, H. Luche, H. J. Fehling, W. D. Hardt, G. Shakhar, and S. Jung. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31: 502-512. https://doi.org/10.1016/j.immuni.2009.06.025
  7. Edelson, B. T., W. KC, R. Juang, M. Kohyama, L. A. Benoit, P. A. Klekotka, C. Moon, J. C. Albring, W. Ise, D. G. Michael, D. Bhattacharya, T. S. Stappenbeck, M. J. Holtzman, S. S. Sung, T. L. Murphy, K. Hildner, and K. M. Murphy. 2010. Peripheral $CD103^+$ dendritic cells form a unified subset developmentally related to $CD8alpha^+$ conventional dendritic cells. J. Exp. Med. 207: 823-836. https://doi.org/10.1084/jem.20091627
  8. Forster, R., A. Schubel, D. Breitfeld, E. Kremmer, I. Renner-Muller, E. Wolf, and M. Lipp. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99: 23-33. https://doi.org/10.1016/S0092-8674(00)80059-8
  9. Jang, M. H., N. Sougawa, T. Tanaka, T. Hirata, T. Hiroi, K. Tohya, Z. Guo, E. Umemoto, Y. Ebisuno, B. G. Yang, J. Y. Seoh, M. Lipp, H. Kiyono, and M. Miyasaka. 2006. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 176: 803-810. https://doi.org/10.4049/jimmunol.176.2.803
  10. Persson, E. K., E. Jaensson, and W. W. Agace. 2010. The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets. Immunobiology 215: 692-697. https://doi.org/10.1016/j.imbio.2010.05.013
  11. Helft, J., F. Ginhoux, M. Bogunovic, and M. Merad. 2010. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol. Rev. 234: 55-75. https://doi.org/10.1111/j.0105-2896.2009.00885.x
  12. Bogunovic, M., F. Ginhoux, J. Helft, L. Shang, D. Hashimoto, M. Greter, K. Liu, C. Jakubzick, M. A. Ingersoll, M. Leboeuf, E. R. Stanley, M. Nussenzweig, S. A. Lira, G. J. Randolph, and M. Merad. 2009. Origin of the lamina propria dendritic cell network. Immunity 31: 513-525. https://doi.org/10.1016/j.immuni.2009.08.010
  13. Tezuka, H., Y. Abe, M. Iwata, H. Takeuchi, H. Ishikawa, M. Matsushita, T. Shiohara, S. Akira, and T. Ohteki. 2007. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448: 929-933. https://doi.org/10.1038/nature06033
  14. Mucida, D., N. Kutchukhidze, A. Erazo, M. Russo, J. J. Lafaille, and M. A. Curotto de Lafaille. 2005. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Invest. 115: 1923-1933. https://doi.org/10.1172/JCI24487
  15. McDole, J. R., L. W. Wheeler, K. G. McDonald, B. Wang, V. Konjufca, K. A. Knoop, R. D. Newberry, and M. J. Miller. 2012. Goblet cells deliver luminal antigen to $CD103^+$ dendritic cells in the small intestine Nature 483: 345-349. https://doi.org/10.1038/nature10863
  16. Farache, J., I. Koren, I. Milo, I. Gurevich, K. W. Kim, E. Zigmond, G. C. Furtado, S. A. Lira, and G. Shakhar. 2013. Luminal bacteria recruit $CD103^+$ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38: 581-595. https://doi.org/10.1016/j.immuni.2013.01.009
  17. Coombes, J. L., K. R. Siddiqui, C. V. rancibia-Carcamo, J. Hall, C. M. Sun, Y. Belkaid, and F. Powrie. 2007. A functionally specialized population of mucosal $CD103^+$ DCs induces $Foxp3^+$ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204: 1757-1764. https://doi.org/10.1084/jem.20070590
  18. Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Oukka, J. R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204: 1775-1785. https://doi.org/10.1084/jem.20070602
  19. Mucida, D., Y. Park, G. Kim, O. Turovskaya, I. Scott, M. Kronenberg, and H. Cheroutre. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 256-260. https://doi.org/10.1126/science.1145697
  20. Denning, T. L., Y. C. Wang, S. R. Patel, I. R. Williams, and B. Pulendran. 2007. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8: 1086-1094. https://doi.org/10.1038/ni1511
  21. Hadis, U., B. Wahl, O. Schulz, M. Hardtke-Wolenski, A. Schippers, N. Wagner, W. Muller, T. Sparwasser, R. Forster, and O. Pabst. 2011. Intestinal tolerance requires gut homing and expansion of $Foxp3^+$ regulatory T cells in the lamina propria. Immunity 34: 37-246.
  22. Niess, J. H., S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307: 254-258. https://doi.org/10.1126/science.1102901
  23. Mazzini, E., L. Massimiliano, G. Penna, and M. Rescigno. 2014. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity 40: 248-261. https://doi.org/10.1016/j.immuni.2013.12.012
  24. Chang, S. Y., J. H. Song, B. Guleng, C. A. Cotoner, S. Arihiro, Y. Zhao, H. S. Chiang, M. O'Keeffe, G. Liao, C. L. Karp, M. N. Kweon, A. H. Sharpe, A. Bhan, C. Terhorst, and H. C. Reinecker. 2013. Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation. Immunity 38: 153-165. https://doi.org/10.1016/j.immuni.2012.09.018
  25. Longman, R. S., G. E. Diehl, D. A. Victorio, J. R. Huh, C. Galan, E. R. Miraldi, A. Swaminath, R. Bonneau, E. J. Scherl, and D. R. Littman. 2014. CX(3)CR1(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211: 1571-1583. https://doi.org/10.1084/jem.20140678
  26. Dasgupta, S., D. Erturk-Hasdemir, J. Ochoa-Reparaz, H. C. Reinecker, and D. L. Kasper. 2014. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 15: 413-423. https://doi.org/10.1016/j.chom.2014.03.006
  27. Lee, S. E., X. Li, J. C. Kim, J. Lee, J. M. Gonzalez-Navajas, S. H. Hong, I. K. Park, J. H. Rhee, and E. Raz. 2012. Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice. Gastroenterology 143: 145-154. https://doi.org/10.1053/j.gastro.2012.03.042
  28. Kole, A., J. He, A. Rivollier, D. D. Silveira, K. Kitamura, K. J. Maloy, and B. L. Kelsall. 2013. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. J. Immunol. 191: 2771-2779. https://doi.org/10.4049/jimmunol.1301093
  29. Schulz, O., E. Jaensson, E. K. Persson, X. Liu, T. Worbs, W. W. Agace, and O. Pabst. 2009. Intestinal $CD103^+$, but not $CX3CR1^+$, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206: 3101-3114. https://doi.org/10.1084/jem.20091925
  30. Jaensson, E., H. Uronen-Hansson, O. Pabst, B. Eksteen, J. Tian, J. L. Coombes, P. L. Berg, T. Davidsson, F. Powrie, B. Johansson-Lindbom, and W. W. Agace. 2008. Small intestinal $CD103^+$ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205: 2139-2149. https://doi.org/10.1084/jem.20080414
  31. Ivanov, I. I., K. Atarashi, N. Manel, E. L. Brodie, T. Shima, U. Karaoz, D. Wei, K. C. Goldfarb, C. A. Santee, S. V. Lynch, T. Tanoue, A. Imaoka, K. Itoh, K. Takeda, Y. Umesaki, K. Honda, and D. R. Littman. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139: 485-498. https://doi.org/10.1016/j.cell.2009.09.033
  32. Goto, Y., C. Panea, G. Nakato, A. Cebula, C. Lee, M. G. Diez, T. M. Laufer, L. Ignatowicz, and I. I. Ivanov. 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40: 594-607. https://doi.org/10.1016/j.immuni.2014.03.005
  33. Yang, Y., M. B. Torchinsky, M. Gobert, H. Xiong, M. Xu, J. L. Linehan, F. Alonzo, C. Ng, A. Chen, X. Lin, A. Sczesnak, J. J. Liao, V. J. Torres, M. K. Jenkins, J. J. Lafaille, and D. R. Littman. 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510: 152-156. https://doi.org/10.1038/nature13279
  34. Persson, E. K., H. Uronen-Hansson, M. Semmrich, A. Rivollier, K. Hagerbrand, J. Marsal, S. Gudjonsson, U. Hakansson, B. Reizis, K. Kotarsky, and W. W. Agace. 2013. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38: 958-969. https://doi.org/10.1016/j.immuni.2013.03.009
  35. Kinnebrew, M. A., C. G. Buffie, G. E. Diehl, L. A. Zenewicz, I. Leiner, T. M. Hohl, R. A. Flavell, D. R. Littman, and E. G. Pamer. 2012. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36: 276-287. https://doi.org/10.1016/j.immuni.2011.12.011
  36. Uematsu, S., K. Fujimoto, M. H. Jang, B. G. Yang, Y. J. Jung, M. Nishiyama, S. Sato, T. Tsujimura, M. Yamamoto, Y. Yokota, H. Kiyono, M. Miyasaka, K. J. Ishii, and S. Akira. 2008. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9: 769-776. https://doi.org/10.1038/ni.1622
  37. Fujimoto, K., T. Karuppuchamy, N. Takemura, M. Shimohigoshi, T. Machida, Y. Haseda, T. Aoshi, K. J. Ishii, S. Akira, and S. Uematsu. 2011. A new subset of $CD103^+$$CD8alpha^+$ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity. J. Immunol. 186: 6287-6295. https://doi.org/10.4049/jimmunol.1004036
  38. Lecuyer, E., S. Rakotobe, H. Lengline-Garnier, C. Lebreton, M. Picard, C. Juste, R. Fritzen, G. Eberl, K. D. McCoy, A. J. Macpherson, C. A. Reynaud, N. Cerf-Bensussan, and V. Gaboriau-Routhiau. 2014. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40: 608-620. https://doi.org/10.1016/j.immuni.2014.03.009
  39. Palm, N. W., M. R. de Zoete, T. W. Cullen, N. A. Barry, J. Stefanowski, L. Hao, P. H. Degnan, J. Hu, I. Peter, W. Zhang, E. Ruggiero, J. H. Cho, A. L. Goodman, and R. A. Flavell. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158: 1000-1010. https://doi.org/10.1016/j.cell.2014.08.006
  40. Tezuka, H., Y. Abe, J. Asano, T. Sato, J. Liu, M. Iwata, and T. Ohteki. 2011. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity 34: 247-257. https://doi.org/10.1016/j.immuni.2011.02.002
  41. Molenaar, R., M. Knippenberg, G. Goverse, B. J. Olivier, A. F. de Vos, T. O'Toole, and R. E. Mebius. 2011. Expression of retinaldehyde dehydrogenase enzymes in mucosal dendritic cells and gut-draining lymph node stromal cells is controlled by dietary vitamin A. J. Immunol. 186: 1934-1942. https://doi.org/10.4049/jimmunol.1001672
  42. Mora, J. R., M. Iwata, B. Eksteen, S. Y. Song, T. Junt, B. Senman, K. L. Otipoby, A. Yokota, H. Takeuchi, P. Ricciardi-Castagnoli, K. Rajewsky, D. H. Adams, and U. H. von Andrian. 2006. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314: 1157-1160. https://doi.org/10.1126/science.1132742
  43. Chang, S. Y., H. R. Cha, O. Igarashi, P. D. Rennert, A. Kissenpfennig, B. Malissen, M. Nanno, H. Kiyono, and M. N. Kweon. 2008. Cutting edge: Langerin+ dendritic cells in the mesenteric lymph node set the stage for skin and gut immune system cross-talk. J. Immunol. 180: 4361-4365. https://doi.org/10.4049/jimmunol.180.7.4361
  44. Iwata, M., A. Hirakiyama, Y. Eshima, H. Kagechika, C. Kato, and S. Y. Song. 2004. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21: 527-538. https://doi.org/10.1016/j.immuni.2004.08.011
  45. Chang, S. Y., H. R. Cha, J. H. Chang, H. J. Ko, H. Yang, B. Malissen, M. Iwata, and M. N. Kweon. 2010. Lack of retinoic acid leads to increased langerin-expressing dendritic cells in gut-associated lymphoid tissues. Gastroenterology 138: 1468-1478, e6. https://doi.org/10.1053/j.gastro.2009.11.006
  46. Chang, S. Y., and M. N. Kweon. 2010. Langerin-expressing dendritic cells in gut-associated lymphoid tissues. Immunol. Rev. 234: 233-246. https://doi.org/10.1111/j.0105-2896.2009.00878.x
  47. Sutherland, D. B., and S. Fagarasan. 2014.Gut reactions: Eosinophils add another string to their bow. Immunity 40: 455-457. https://doi.org/10.1016/j.immuni.2014.04.003
  48. Chu, V. T., A. Beller, S. Rausch, J. Strandmark, M. Zanker, O. Arbach, A. Kruglov, and C. Berek. 2014. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40: 582-593. https://doi.org/10.1016/j.immuni.2014.02.014
  49. Chu, D. K., R. Jimenez-Saiz, C. P. Verschoor, T. D. Walker, S. Goncharova, A. Llop-Guevara, P. Shen, M. E. Gordon, N. G. Barra, J. D. Bassett, J. Kong, R. Fattouh, K. D. McCoy, D. M. Bowdish, J. S. Erjefalt, O. Pabst, A. A. Humbles, R. Kolbeck, S. Waserman, and M. Jordana. 2014. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J. Exp. Med. 211: 1657-1672. https://doi.org/10.1084/jem.20131800
  50. Atarashi, K., T. Tanoue, T. Shima, A. Imaoka, T. Kuwahara, Y. Momose, G. Cheng, S. Yamasaki, T. Saito, Y. Ohba, T. Taniguchi, K. Takeda, S. Hori, I. I. Ivanov, Y. Umesaki, K. Itoh, and K. Honda. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337-341. https://doi.org/10.1126/science.1198469
  51. Atarashi, K., T. Tanoue, K. Oshima, W. Suda, Y. Nagano, H. Nishikawa, S. Fukuda, T. Saito, S. Narushima, K. Hase, S. Kim, J. V. Fritz, P. Wilmes, S. Ueha, K. Matsushima, H. Ohno, B. Olle, S. Sakaguchi, T. Taniguchi, H. Morita, M. Hattori, and K. Honda. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232-236. https://doi.org/10.1038/nature12331
  52. Benson, M. J., K. Pino-Lagos, M. Rosemblatt, and R. J. Noelle. 2007. All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation1. J. Exp. Med. 204: 1765-1774. https://doi.org/10.1084/jem.20070719
  53. Mora, J. R., M. R. Bono, N. Manjunath, W. Weninger, L. L. Cavanagh, M. Rosemblatt, and U. H. Von Andrian. 2003. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424: 88-93. https://doi.org/10.1038/nature01726

Cited by

  1. Ginseng Berry Extract Attenuates Dextran Sodium Sulfate-Induced Acute and Chronic Colitis vol.8, pp.4, 2015, https://doi.org/10.3390/nu8040199
  2. Role of the Gut Microbiome in Modulating Arthritis Progression in Mice vol.6, pp.None, 2015, https://doi.org/10.1038/srep30594
  3. Gut homeostasis and regulatory T cell induction depend on molecular chaperone gp96 in CD11c + cells vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-02415-7
  4. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer’s patches vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-02729-6
  5. Hsa-miR-99b/let-7e/miR-125a Cluster Regulates Pathogen Recognition Receptor-Stimulated Suppressive Antigen-Presenting Cells vol.9, pp.None, 2015, https://doi.org/10.3389/fimmu.2018.01224
  6. Mesenteric CD103 + DCs Initiate Switched Coxsackievirus B3 VP1-Specific IgA Response to Intranasal Chitosan-DNA Vaccine Through Secreting BAFF/IL-6 and Promoting Th17/Tfh Differentiation vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.02986
  7. CX3CR1+ Macrophages and CD8+ T Cells Control Intestinal IgA Production vol.201, pp.4, 2015, https://doi.org/10.4049/jimmunol.1701459
  8. Regulation of CD4 + CD8 CD25 + and CD4 + CD8 + CD25 + T cells by gut microbiota in chicken vol.8, pp.None, 2015, https://doi.org/10.1038/s41598-018-26763-0
  9. Lactobacillus plantarum IS-10506 supplementation increases faecal sIgA and immune response in children younger than two years vol.10, pp.3, 2015, https://doi.org/10.3920/bm2017.0178
  10. Current Understanding of Human Metaproteome Association and Modulation vol.18, pp.10, 2019, https://doi.org/10.1021/acs.jproteome.9b00301
  11. Gut bacteria affect the tumoral immune milieu: distorting the efficacy of immunotherapy or not? vol.11, pp.4, 2015, https://doi.org/10.1080/19490976.2020.1739794
  12. Environnement microbiologique, confinement et risque allergique vol.61, pp.2, 2015, https://doi.org/10.1016/j.reval.2020.11.004
  13. Small intestinal immune-environmental changes induced by oral tolerance inhibit experimental atopic dermatitis vol.12, pp.3, 2021, https://doi.org/10.1038/s41419-021-03534-w
  14. Quantitative sequencing clarifies the role of disruptor taxa, oral microbiota, and strict anaerobes in the human small-intestine microbiome vol.9, pp.1, 2015, https://doi.org/10.1186/s40168-021-01162-2