DOI QR코드

DOI QR Code

Effects of Tumor Necrosis Factor Alpha Blocker Adalimumab in Experimental Spinal Cord Injury

  • Borcek, Alp Ozgun (Department of Neurosurgery, Gazi University Faculty of Medicine) ;
  • Civi, Soner (Department of Neurosurgery, Medicana Private Hospital) ;
  • Ocal, Ozgur (Department of Neurosurgery, Gazi University Faculty of Medicine) ;
  • Gulbahar, Ozlem (Department of Biochemistry, Gazi University Faculty of Medicine)
  • 투고 : 2014.03.10
  • 심사 : 2014.08.24
  • 발행 : 2015.02.28

초록

Objective : Tumor necrosis factor alpha (TNF-${\alpha}$) have proven effects in pathogenesis of neuroinflammation after spinal cord injury (SCI). Current study is designed to evaluate the effects of an anti-TNF-${\alpha}$ agent, adalimumab, on spinal cord clip compression injury in rats. Methods : Thirty two male adult Wistar rats were divided into four groups (sham, trauma, infliximab, and adalimumab groups) and SCI was introduced using an aneurysm clip. Animals in treatment groups received 5 mg/kg subcutaneous adalimumab and infliximab right after the trauma. Malondialdehyde (MDA) levels were studied in traumatized spinal cord tissues 72 hours after the injury as a marker of lipid peroxidation. Results : Animals that received anti-TNF-${\alpha}$ agents are found to have significantly decreased MDA levels. MDA levels were significantly different between the trauma and infliximab groups (p<0.01) and trauma and adalimumab groups (p=0.022). There was no significant difference in neurological evaluation of the rats using Tarlov scale. Conclusion : These results suggest that, like infliximab, adalimumab has favorable effects on lipid peroxidation induced by spinal cord trauma in rats.

키워드

참고문헌

  1. Balentine JD : Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39 : 236-253, 1978
  2. Balentine JD : Pathology of experimental spinal cord trauma. II. Ultrastructure of axons and myelin. Lab Invest 39 : 254-266, 1978
  3. Bayrakli F, Balaban H, Ozum U, Duger C, Topaktas S, Kars HZ : Etanercept treatment enhances clinical and neuroelectrophysiological recovery in partial spinal cord injury. Eur Spine J 21 : 2588-2593, 2012 https://doi.org/10.1007/s00586-012-2319-7
  4. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC : Cell death in models of spinal cord injury. Prog Brain Res 137 : 37-47, 2002 https://doi.org/10.1016/S0079-6123(02)37006-7
  5. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, et al. : Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 16 : 851-863, 1999 https://doi.org/10.1089/neu.1999.16.851
  6. Blight AR : Macrophages and inflammatory damage in spinal cord injury. J Neurotrauma 9 Suppl 1 : S83-S91, 1992
  7. Bracken MB : Methylprednisolone and acute spinal cord injury : an update of the randomized evidence. Spine (Phila Pa 1976) 26 (24 Suppl) : S47-S54, 2001 https://doi.org/10.1097/00007632-200112151-00010
  8. Bracken MB : Methylprednisolone in the management of acute spinal cord injuries. Med J Aust 153 : 368, 1990
  9. Bracken MB : Steroids for acute spinal cord injury. Cochrane Database Syst Rev 1 : CD001046, 2012
  10. Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, et al. : Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251 : 45-52, 1984 https://doi.org/10.1001/jama.1984.03340250025015
  11. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. : A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322 : 1405-1411, 1990 https://doi.org/10.1056/NEJM199005173222001
  12. Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF, et al. : Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 63 : 704-713, 1985 https://doi.org/10.3171/jns.1985.63.5.0704
  13. Burmester GR, Mease P, Dijkmans BA, Gordon K, Lovell D, Panaccione R, et al. : Adalimumab safety and mortality rates from global clinical trials of six immune-mediated inflammatory diseases. Ann Rheum Dis 68 : 1863-1869, 2009 https://doi.org/10.1136/ard.2008.102103
  14. Burness CB, Keating GM : Adalimumab : a review of its use in the treatment of patients with ulcerative colitis. BioDrugs 27 : 247-262, 2013 https://doi.org/10.1007/s40259-013-0033-6
  15. Caminero A, Comabella M, Montalban X : Tumor necrosis factor alpha (TNF-${\alpha}$), anti-TNF-${\alpha}$ and demyelination revisited : an ongoing story. J Neuroimmunol 234 : 1-6, 2011 https://doi.org/10.1016/j.jneuroim.2011.03.004
  16. Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L : Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151 : 77-88, 1998 https://doi.org/10.1006/exnr.1998.6785
  17. Catala A : Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/ or pathological conditions. Chem Phys Lipids 157 : 1-11, 2009 https://doi.org/10.1016/j.chemphyslip.2008.09.004
  18. Diak P, Siegel J, La Grenade L, Choi L, Lemery S, McMahon A : Tumor necrosis factor alpha blockers and malignancy in children : forty-eight cases reported to the Food and Drug Administration. Arthritis Rheum 62 : 2517-2524, 2010 https://doi.org/10.1002/art.27511
  19. Ducker TB, Kindt GW, Kempf LG : Pathological findings in acute experimental spinal cord trauma. J Neurosurg 35 : 700-708, 1971 https://doi.org/10.3171/jns.1971.35.6.0700
  20. Emmez H, Borcek AO, Kaymaz M, Kaymaz F, Durdag E, Civi S, et al. : Neuroprotective effects of gabapentin in experimental spinal cord injury. World Neurosurg 73 : 729-734, 2010 https://doi.org/10.1016/j.wneu.2010.04.008
  21. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, et al. : The cellular inflammatory response in human spinal cords after injury. Brain 129 (Pt 12) : 3249-3269, 2006 https://doi.org/10.1093/brain/awl296
  22. Grotto D, Maria LS, Valentini J, Paniz C, Schmitt G, Garcia SC, et al. : Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim Nova 32 : 169-174, 2009 https://doi.org/10.1590/S0100-40422009000100032
  23. Guadagno J, Xu X, Karajgikar M, Brown A, Cregan SP : Microglia-derived TNF${\alpha}$ induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death Dis 4 : e538, 2013 https://doi.org/10.1038/cddis.2013.59
  24. Guven C, Borcek AO, Cemil B, Kurt G, Yildirim Z, Ucankus NL, et al. : Neuroprotective effects of infliximab in experimental spinal cord ischemic injury. J Clin Neurosci 17 : 1563-1567, 2010 https://doi.org/10.1016/j.jocn.2010.04.027
  25. Hall ED : Inhibition of lipid peroxidation in CNS trauma. J Neurotrauma 8 Suppl 1 : S31-S40; discussion S41, 1991
  26. Hall ED, Braughler JM : Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis 71 : 81-105, 1993
  27. Hamada Y, Ikata T, Katoh S, Nakauchi K, Niwa M, Kawai Y, et al. : Involvement of an intercellular adhesion molecule 1-dependent pathway in the pathogenesis of secondary changes after spinal cord injury in rats. J Neurochem 66 : 1525-1531, 1996
  28. Harrington JF, Messier AA, Levine A, Szmydynger-Chodobska J, Chodobski A : Shedding of tumor necrosis factor type 1 receptor after experimental spinal cord injury. J Neurotrauma 22 : 919-928, 2005 https://doi.org/10.1089/neu.2005.22.919
  29. Kaymakcalan Z, Sakorafas P, Bose S, Scesney S, Xiong L, Hanzatian DK, et al. : Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol 131 : 308-316, 2009 https://doi.org/10.1016/j.clim.2009.01.002
  30. Klebanoff SJ, Vadas MA, Harlan JM, Sparks LH, Gamble JR, Agosti JM, et al. : Stimulation of neutrophils by tumor necrosis factor. J Immunol 136 : 4220-4225, 1986
  31. Kurt G, Cemil B, Borcek AO, Borcek P, Akyurek N, Sepici A, et al. : Infliximab administration reduces neuronal apoptosis on the optic pathways in a rabbit hydrocephalus model : a preliminary report. Br J Neurosurg 24 : 275-279, 2010
  32. Kurt G, Ergun E, Cemil B, Borcek AO, Börcek P, Gulbahar O, et al. : Neuroprotective effects of infliximab in experimental spinal cord injury. Surg Neurol 71 : 332-336; discussion 336, 2009 https://doi.org/10.1016/j.surneu.2008.01.038
  33. Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, et al. : A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 28 : 1545-1588, 2011 https://doi.org/10.1089/neu.2009.1149
  34. Mihara M, Uchiyama M : Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86 : 271-278, 1978 https://doi.org/10.1016/0003-2697(78)90342-1
  35. Papakostas JC, Matsagas MI, Toumpoulis IK, Malamou-Mitsi VD, Pappa LS, Gkrepi C, et al. : Evolution of spinal cord injury in a porcine model of prolonged aortic occlusion. J Surg Res 133 : 159-166, 2006 https://doi.org/10.1016/j.jss.2005.10.007
  36. Reinisch W, Sandborn WJ, Hommes DW, D'Haens G, Hanauer S, Schreiber S, et al. : Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis : results of a randomised controlled trial. Gut 60 : 780-787, 2011 https://doi.org/10.1136/gut.2010.221127
  37. Sekhon LH, Fehlings MG : Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 26 (24 Suppl): S2-S12, 2001 https://doi.org/10.1097/00007632-200112151-00002
  38. Tang X, Wang Y, Zhou S, Qian T, Gu X : Signaling pathways regulating dose-dependent dual effects of TNF-${\alpha}$ on primary cultured Schwann cells. Mol Cell Biochem 378 : 237-246, 2013 https://doi.org/10.1007/s11010-013-1614-x
  39. Wang CX, Nuttin B, Heremans H, Dom R, Gybels J : Production of tumor necrosis factor in spinal cord following traumatic injury in rats. J Neuroimmunol 69 : 151-156, 1996 https://doi.org/10.1016/0165-5728(96)00080-X
  40. Yu SH, Cho DC, Kim KT, Nam KH, Cho HJ, Sung JK : The neuroprotective effect of treatment of valproic Acid in acute spinal cord injury. J Korean Neurosurg Soc 51 : 191-198, 2012 https://doi.org/10.3340/jkns.2012.51.4.191

피인용 문헌

  1. Current Agents and Related Therapeutic Targets for Inflammation After Acute Traumatic Spinal Cord Injury vol.132, pp.None, 2019, https://doi.org/10.1016/j.wneu.2019.08.108
  2. Novel inhibitors of Rho-kinase mediated neuroinflammatory pathways and their potential application in recovery of injured spinal cord vol.38, pp.16, 2020, https://doi.org/10.1080/07391102.2019.1686066