
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, Feb. 2015 659

Copyright © 2015 KSII

This research was supported by the National Natural Science Foundation (61272125) of China, the specialized

research fund for the doctoral program of Higher Education (20121333110014), the Hebei Provincial Natural

Science Foundation (F2011203234) and the science and technology plan project of Qinhuangdao(201401A053).

http://dx.doi.org/10.3837/tiis.2015.02.010 ISSN : 1976-7277

An Anomalous Behavior Detection Method
Using System Call Sequences for

Distributed Applications

 Chuan Ma
1,3

, Limin Shen
1,3

and Tao Wang
1,2,3

1
 School of Information Science and Engineering, Yanshan University

Qinhuangdao, 066004 - China

[e-mail: tianyi_mc@126.com]
2Hebei Normal University of Science & Technology

Qinhuangdao, 066004 – China

[e-mail: yy_mma@126.com]
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province

Qinhuangdao, 066004 - China

*Corresponding author: Chuan Ma

Received July 10, 2014; revised November 20, 2014; accepted December 22, 2014;

published February 28, 2015

Abstract

Distributed applications are composed of multiple nodes, which exchange information with

individual nodes through message passing. Compared with traditional applications,

distributed applications have more complex behavior patterns because a large number of

interactions and concurrent behaviors exist among their distributed nodes. Thus, it is difficult

to detect anomalous behaviors and determine the location and scope of abnormal nodes, and

some attacks and misuse cannot be detected. To address this problem, we introduce a method

for detecting anomalous behaviors based on process algebra. We specify the architecture of

the behavior detection model and the detection algorithm. The anomalous behavior detection

and analysis demonstrate that our method is a good discriminator between normal and

anomalous behavior characteristics of distributed applications. Performance evaluation

shows that the proposed method enhances efficiency without security degradation.

Keywords: Behavior detection, distributed applications, anomalous behavior, process

algebra, system call

660 Chuan Ma et al.: An Anomalous Behavior Detection Method Using System Call Sequences for Distributed Applications

1. Introduction

With the popularity and deepening of the network, distributed computing has to expand

from its origins in shared-memory computing and local area networks to a wider context [1].

A distributed application is a program distributed on independent computers that exchange

information with individual nodes by message passing to accomplish a common task.

Compared to the traditional applications, distributed applications have many advantages such

as providing increasingly complex functionality and acceptable performance that require

parallelizing their operations on individual nodes. Unfortunately, a large complex behavior

patterns appear in the distributed applications due to the nodes changing frequently [2].

Nowdays, distributed systems have become an increasingly important platform for providing

multiple services, for example, distributed systems form the basis for critical infrastructure in

different domains such as finance, medicine, aeronautics, telephony, and Internet services.

The quality of such distributed systems is often crucial [3]. However, the development

process of distributed applications is difficult and inefficiency. Its development cycle is long,

and it is difficult to avoid and find implicit errors and defects. Meanwhile, hackers

continually explore and develop new methods to perform attacks on distributed systems.

Therefore, security for distributed applications is a concern, and providing safe, efficient

parallel implementations of distributed applications remain a challenge.

There are many different security paradigms to protect distributed applications from some

attacks. Irfan Gul and M. Hussain proposed an efficient multi-threaded distributed cloud IDS

model to handle large scale network access traffic, avoiding sophisticated distributed

intrusion attacks like Distributed Denial of Service (DDOS) [4]. Collberg et al. present a new

general technique for protecting clients in distributed systems against Remote

Man-at-the-end (R-MATE) attacks [5]. Idrees et al. proposed framework is an amalgamation

of some of the existing state-of-the-art intrusion detection and prevention technologies for

detection and prevention of known and unknown network and cloud computing

vulnerabilities [6]. Many distributed real-time systems are often safety-critical and need to be

certified, however their certification is hard due to their distributed nature. Meseguer et al.

presented a formal model transformation that maps a synchronous design to reduce the

design and verification complexities of achieving virtual synchrony [7]. Several assumptions

have usually been overemphasized in the above security paradigms: That security policy can

be distinctly and correctly specified, that distributed applications can be correctly

implemented, and that systems can be correctly configured. In fact, distributed applications

are not static: their distributed nodes being continually changed by connecting or

disconnecting; Applications are added and removed, and configurations are changed.

Anomalous behaviors in distributed applications are often hard to find. Many anomalous

behaviors reflect discrepancies between a system’s behavior and the programmer’s

assumptions about that behavior.

In this paper, we can improve security through detecting anomalous behaviors based on

process algebra. This method is based on the assumption that distributed applications can be

correctly designed, but that violations of security policy can be detected by monitoring and

analyzing software behaviors. The basic steps are as follows: We obtain control flow graphs

(CFG) of individual nodes by static binary code analysis. Then we transform the control flow

graphs into the corresponding process expressions automatically by using the technique in

our previous literature [8], and rewrite process expressions by eliminating the non

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 661

determinism and adding concurrency operators. Finally, we construct a behavior detection

model of distributed applications and give the detection algorithm.

The contributions can be summarized to the following four points.

1) The interactions and concurrent behaviors of distributed applications can be described

accurately. We apply process algebra to distributed applications behavior modeling, which is

a profitable security paradigms attempt.

2) We propose the concurrent mechanism in the distributed applications that is structured

as synchronization process set and running state set. This reduces the complexity of behavior

analysis and detection.

3) Our model only maintains the linear list, and does not use the backtracking algorithm

because the non determinism of process expressions was eliminated. This reduces the

runtime overheads.

4) We provide a formal analysis method for developers that are familiar or unfamiliar to

distributed applications. And we also provide an anomalous behavior detection method for

the system maintenance personnel.

The structure of this paper is as follows. In Section 2, we review the previous work in

analysis and detection methods for distributed applications. Section 3 introduces process

algebra. Section 4 specifies the construction process of our model. The experimental

evaluation is discussed in Section 5, and we conclude the paper in Section 6.

2. Related Work

Applications use system calls to gain access to functions from an operating systems kernel.

Therefore, it is theoretically possible to detect when a hacker may be exploiting a program

by analyzing system call patterns of an application [9]. Since the original development of a

model that takes advantage of the system call sequence for normal behavior of a program

was presented by Forrest et al. [10-11], many scholars have researched behaviors using the

system call. By dynamic training or static analysis, scholars use the system call analysis for

behavior analysis and detection. These techniques can be divided into three categories:

system call short sequences [11-13], automata [14-17], and the Virtual Path [18]. Of these

techniques, modeling based on system call short sequences is efficient and can be

implemented easily. However, this method is imprecise, and these intrusion detection models

are much more prone to false positives. Compared with short sequences, branch and loop

structures of programs can be expressed. Modeling based on automata improves the

precision of behavior modeling and reduces the false positive rate. Unfortunately, these

models still have some limitations. For example, impossible paths, prohibitively high

space–time complexity, and they are unsuitability for analyzing concurrent behaviors.

There are many different analysis and detection methods for distributed systems.

Moshirpour et al. proposed a method for detecting emergent behavior, which is an important

issue in distributed systems' design [19]. Distributed and concurrent object-oriented

applications are difficult to analyze due to the complexity of their concurrency,

communication, and synchronization mechanisms. Din C. C. et al. established a proof system

for partial correctness reasoning based on communication histories and class invariants,

which allow components to be analyzed independently of their environment [3]. Yang Fan et

al. designed an aspect-oriented programming language based on distributed tuple spaces to

enforce security policies for distributed systems [20]. To address the problem of testing the

large-scale network services for complex performance problems and configuration errors,

Gupta et al. presented an approach to test distributed systems in which they multiplex all of

662 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

the nodes [21]. As modern data centers run a variety of applications, detecting failures in

distributed systems have limited scalability, or have results that are hard to interpret. Tan et

al. presented a light-weight technique to quickly detect performance problems in distributed

systems using only correlations of OS metrics [22]. Rohr et al. introduced a workload

intensity sensitive timing behavior analysis method for distributed multi-user systems, which

consider inter-dependencies between concurrent execution operations within a distributed

system to reduce the standard deviation for succeeding analysis steps [23]. Moshirpour et al.

proposed the utilization of an ontology-based approach to detect emergent behavior in

distributed systems by a set of message sequence charts [24]. These methods solve some

problems in distributed systems at a certain aspect.

In this paper, we address a distributed application that is composed of multiple computing

subjects that accomplish computing tasks by cooperating with each other. The monitoring

node in this paper refers to the deployment node of a distributed application—for instance,

an application in a process space or an application deployed on a host. These nodes have a

unified synchronous clock, so we can determine behavior traces by the occurrence order.

3. Process Algebra

Process algebra is a mathematical tool used for depicting concurrent systems [25-26], and is

used for researching concurrent, distributed, interactive systems [27]. The "process"

mentioned in process algebra refers to the behavior patterns that are shown by the distributed

applications. That consists of a series of actions and the operators that are subordinate to the

limited action set. This paper uses process algebra to describe the behaviors of distributed

applications. We extract a common subset, the basic component of process algebra,

containing the sequential composition operator (.), alternative composition operator (+), and

parallel composition operator (||A). Let A be a finite set of synchronous actions (A). The

syntax specifications are defined as follows:

1 2 1 2:: 0 | | . | | ||AP a P P P P P √
Their corresponding meanings are as follows:

1) 0 stands for the process down time, no action is performed.√stands for process

terminated successfully.

2) .a P stands for prefix action a , then transformed into process P . Actions in this

paper are the same as actions in CCS [28], divided into action (a) and co-action (a),

obviously a a . The prefix action a can have parameters.

3)
1 2P P stands for the choice of 1P or 2P , according to the process subordinated by

the following actions.

4)
1 2||AP P means that if action (a) in 1P and co-action (a) in 2P are subordinated

to set A , then 1P and 2P execute synchronously, while any other actions are executed

asynchronously. After 1P and 2P executing, the actions are replaced by ()a .

Definition 1 Guarded Expression. The process expression begins with the prefix action. e.g.,

.P a Q .

Definition 2 Behavior Trace. Suppose the process P can be defined as a finite state transition

of the form: 11

0 1 1

n n

n n

a aa
P P P P P


   …

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 663

1 2
, ,

n
a a a … is the behavior trace of process P . The set of all possible behavior

traces is denoted by ()traces P .

Definition 3 Process Equivalence. If P ， Q are two different processes ， and

(() ()traces P traces Q), i.e., () ()traces P traces Q and ()traces Q  ()traces P , then these are

denoted as process P ，Q equivalent.

The process algebra is used for describing behaviors of distributed applications in this

paper. We detect behaviors base on process expressions; thus, the process equivalence is

based on the behavior trace. If two processes have the same behavior trace, they are

considered equivalent. This also meets the requirements for behavior detection. However, it

differs from equivalence based on mutual simulation of CCS [28]. It also differs from

equivalence based on refusal sets in CSP [29].

4. Core Mechanisms

The architecture of our model consists of a modeling unit and a detection unit, shown in Fig.

1.

S.pe

0 1.S accept S

…...

distributed applications

CFGs

the binary code the system call sequence

detection

detection unit

result

modeling unit

connect

G1

G2

G0

G3 send recv

close

G

4

exit

connect

G1

G2

G0

G3 send recv

close

G

4

exit

connect

G1

G2

G0

G3 send recv

close

G

4

exit

1 accept ^

3

2

6

2

7

^ ^

0

2

3

4

5

6

7

vertex firstedge adjvex nextinfo

recv

send 4 lock 5 close ^

send ^

pthread_exit ^

unlock ^

01 pthread_create

7 close ^

2 pthread_create

adjacency list

1 accept ^

3

2

6

2

7

^ ^

0

2

3

4

5

6

7

vertex firstedge adjvex nextinfo

recv

send 4 lock 5 close ^

send ^

pthread_exit ^

unlock ^

01 pthread_create

7 close ^

2 pthread_create

adjacency list

1 accept ^

3

2

6

2

7

^ ^

0

2

3

4

5

6

7

vertex firstedge adjvex nextinfo

recv

send 4 lock 5 close ^

send ^

pthread_exit ^

unlock ^

01 pthread_create

7 close ^

2 pthread_create

adjacency list G.pe

0 1

1 2 3

.

. .

G connect G

G send G close G



 

*.pe

connect(1),C,1

rsSet

1 S0,S2,S3 ^

1

S

C C2

1G G1

2 C0 ^

^

… ...

0 1

1 2 3

.

. .

C connect C

C send C close C



 
*.pe

 C.pe

Concurrent calculus rule

… ...

. || . ().(||)A Aa P a Q a P Q

. || . .(|| .)A Aa P b Q a P b Q

Process migration

rule

1

. j

n
a

i i j

i

a P P



()

1

. || . ||j

n
a

i i A j j A

i

a P a R P R





… ...

… ...

appType proLabelSetinstanceID

accept(2,1),S,1

Pthread_create,S,1

… …

读取当前进程标号

初始化cpSet、prefixSet

当前进程

?P cpSet

待检动作
?a prefixSet

待检动作

?a A

下一个待检动作

?b A

按迁移法则2迁移

是

是

是

是

触发“同步异常”

发出警报！！

否

读取一个待检动作

读取一个待检动作

是

?b a

是

按迁移法则3迁移

否

否

触发“路径异常2”

发出警报！！

否

否

待检动作
?a prefixSet

触发“路径异常1”

发出警报！！

否

按迁移法则1迁移

是

更新cpSet和prefixSet

*.pm

Fig. 1. Architecture of the model

The input to the modeling unit is the binary code of distributed applications, used to

generate CFGs of the monitoring nodes. The modeling unit contains the process for building

the normal behavior database. Process expressions are obtained from the corresponding

CFGs. We rewrite the process expressions to accurately describe the interaction behaviors

and concurrent behaviors of distributed applications. The rewritten process expressions are

deemed as normal behaviors, saved in files *.pe. The process migration rules are deduced

from concurrent calculus rules and are saved in files *.pm, used for detecting anomalous

behaviors. The input to the detection unit is the system call sequences monitored at runtime,

664 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

used as the detection source. The states of distributed applications constitute running state set

rsSet. We use the files *.pe, files *.pm, and rsSet to detect the system call sequences

extracted at runtime. Once an anomalous behavior is detected, the model will alert and

determine the location and scope of abnormal nodes.

4.1 Generating Process Expressions

Based on IA32 platforms running the Linux OS, we use a bank queue management system as

an example. The distributed systems consist of get-ticket client, call-ticket clients, and a server.

The server maintains a user queuing list and listens to clients to create a thread for each

connection. When the get-ticket client sends a request, the server adds the request

information to the end of the queuing list. When the call-ticket clients send a request, the

server takes out the head of the queuing list and deals with the new business. The processing

procedure must be locked because there can be multiple call-ticket clients. We compile the

example to binary code and use the EEL [15-16] method to generate the CFGs for each

function of monitoring nodes. We eliminate the edges  of CFG using the previously

reported reduction algorithm [30], merging each function CFGs of monitoring nodes into a

global CFG. We capture part of the work flow in Fig. 2. The two actions connected by the red

dotted line are complementary actions.

connect

G1

G2

G0

G3

S1

S2

S3

send recv

close

G

4

pthread_create

recv

send
send

lock

unlock

close

pthread_exit

exit

S4

S6

S5

S7

connect

C1

C2

C0

C3

send
recv

close

C4

exit

S0

accept

close

pthread_create

G: get-ticket client

C: call-ticket client

S: server

Fig. 2. A CFG for part of the work flow

1 accept ^

3

2

6

2

7

^ ^

0

2

3

4

5

6

7

vertexfirstedge adjvex nextinfo

recv

send 4 lock 5 close ^

send ^

pthread_exit ^

unlock ^

01 pthread_create 7 close ^2 pthread_create

Fig. 3. The adjacency list of the CFG in Fig. 2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 665

We denote the CFG as { , }G V E , where V denotes vertices and E denotes the directed

edge that is marked with system calls. We store the CFG with an adjacency list, which keeps

the system calls on the edge. We obtain the corresponding adjacency list for the CFG of the

server, as shown in Fig. 3.

The algorithm that transforms the CFGs into the corresponding process expression is

given below.

1) All the vertices v V are denoted by process label.

2) If ,i jv v V and
iv reaches

jv exist, there exists an output edge e E , which

generates the process expression .i jv e v .

3) If on the vertices iv V exist many output edges n(n ≥ 2), then each output edge

defined in (2) generates a process expression, connected using the alternative composition

operator:
1 1.i j j jn jnv e v e v   .

4) If the vertices iv V do not contain an output edge, that information is denoted by the

successful terminated process mark √.

We obtain the process expressions of the server based on the above algorithm.

S0=accept.S1

S1= pthread_create.S0+pthread_create.S2+ close.S7

S2=recv.S3

S3=send.S2+lock.S4 +close.S5

S4=send.S6

S5=pthread_exit.S7

S6=unlock.S2

S7=√

4.2 Rewriting Process Expressions

4.2.1 Eliminating Nondeterminism

The concept “nondeterminism” describes a finite automaton that exists in several states at the

same time. Similarly, if the process expression contains an item that has the form . .a P a Q ,

it is nondeterminist. This kind of process expression can cause backtracking in the detection

phase, reducing detection efficiency. Fortunately, we use an ingenious way to eliminate the

nondeterminism.

According to definition 3, we know the left distributive law of alternative composition

operators is established, i.e., . . .()a P a Q a P Q   . Thus we use P Q as a new process to

eliminate nondeterminism (examples below).

S1 = pthread_create.S0 + pthread_create.S2 + close.S7

= pthread_create.(S0+ S2) + close.S7

= pthread_create.S8 + close.S7

S8 = S0 + S2 = accept.S1 + recv.S3

We eliminate nondeterminism by adding a new expression, S8. The effectiveness is similar

to the automata theory; however, our method is more intuitive and easy to implement.

4.2.2 Adding Concurrency Operators

The function CFGs cannot express concurrency, so we must rewrite the process expressions

to describe the concurrent characteristics of distributed applications.

666 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

4.2.2.1 Structure Synchronous Actions Set

According to the concurrent operator
1 2||AP P in Section 3, we must determine synchronous

actions set A and its complementary actions. In order to accurately depict the behaviors of

system calls, we need to capture and analyze arguments. For instance, we can determine

whether the send and recv belong to the same socket channel. Then we can determine

whether they are complementary actions. From 324 system calls (Linux-2.6.18 kernel), we

extract the system calls that cause synchronous operation and analyze their arguments. Some

of them are listed in Table 1, where the pairs accept and connect, send and recv are

complementary actions.

Table 1. Arguments capture and analysis for system calls

System

call

Modeling phase Detection phase

Arguments Description Arguments Description

accept
srcType

desType

program type in local host

program type in destination

host (e.g., server, client)

newfd

sockaddr

return value

(the file descriptor, used

for accessing destination

address)

local address pointer

connect
srcType

desType

program type in local host

program type in destination

host (e.g., server, client)

sockaddr destination address pointer

send
srcType

desType

program type in local host

program type in destination

host (e.g., server, client)

sockfd

the file descriptor

(for accessing destination

address)

recv
srcType

desType

program type in local host

program type in destination

host (e.g., server, client)

sockfd

the file descriptor

(for accessing destination

address)

We capture the arguments by analyzing the assembly code; for example.
0x080489c2: mov −0x18(%ebp),%eax

0x080489c5: mov %eax,(%esp)

0x080489c8: call 0x8048608 <send@plt>

… …

0x08048a01: mov −0x18(%ebp),%eax

0x08048a04: mov %eax,(%esp)

0x08048a07: call 0x8048548 <recv@plt>

… …

From the above assembly code, we know the parameters sockfd of send and recv are from
[EBP-18h]. So send and recv pass messages to others by the same socket channel, and we
mark srcType and desType as c and s respectively: send(c,s), recv(c,s). Because the
distributed nodes are being continually changed by connecting or disconnecting, c and s are
used to distinguish the different applications, such as a server application or a client
application. Moreover, we use them during the modeling phase instead of specific parameter
values such as [EBP-18h] for two reasons: (1) We only need to know the relation between
parameters during the modeling phase rather than specific values. (2) The specific values can
only be determined at runtime. Obviously, we cannot expect programmers to provide
specific values because they are too much. However, the relation of parameters is not
determined only by analyzing the assembly code. The best way to see the relation is to study
the program’s behaviors in correct execution. In other words, we can statistically “learn” the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 667

relation between parameters through training.

4.2.2.2 Adding Concurrency Operation

Concurrency operators are added to process expressions in the following situations:

1) Situation 1. The operations can create a new multi-process or multi-thread. When the

multi-processes or multi-threads such as fork and vfork appear in the application, we should

analyze jump sentences such as JLE and JNE and change their alternative composition

operators to parallel composition operators (‘+’→’||A’).

For instance, in pthread_create of process expression S1 in section 4.2.1, the alternative

composition operators in S8 are replaced with parallel composition operators:

S8=S0||AS2=accept.S1||A recv.S3.

2) Situation 2. The operations are used for the synchronization of multi-threads.

(a) The mutual exclusion operations appear in system calls, such as lock,

pthread_mutex_lock, unlock, and pthread_mutex_unlock.

(b) The condition variables operations appear in system calls, such as lock,

pthread_mutex_lock, wait, signal, unlock, and pthread_mutex_unlock.

(c) The read or write lock operations appear in system calls, such as rlock and wlock.

The method of rewriting a process expression is to create a process expression for a), b),

c)—for instance, . .lock lockS lock unlock S —and let it run concurrently with an access process,

such as ||A lockP S , as detailed in our previous publication [8].

(d) Parent and child process, the main thread or child thread synchronization operation:

In order to recycle the resources of a zombie process, after calling the child process exit,

the parent process must call wait, wait3, wait4, waitpid, pthread_join, etc. Thus, we must add

a synchronization mark: We insert an action
isig after wait and insert a co-action

isig

after system call exit (i is a positive integer, the identification number). Meanwhile, we add

the new inserted action into the synchronous action set A.

3) Situation 3. The operations are used for interaction in distributed monitoring nodes. For

example, in the queue management system in section 4.1, after obtaining the process

expressions of each monitoring node, we combine the process expressions into the whole

process expression by parallel composition operators, i.e.,
0 0 0|| ||QMS A AP G C S .

4.3 Process Migration Rules

According to section 3, the sequential composition operator and alternative composition

operator can migrate as . aa P P , . . aa P b Q P  , . . ba P b Q Q  . This gives us

migration rule 1:

Migration rule 1:
1

. j

n
a

i i j

i

a P P


 ,1≤j≤n, n≥1.

According to migration rule 1, the following migration can lead to system halt, causing an

abnormality.

Path abnormality 1: If
ia b , then

1

0.
n

b

i i

i

a P


 ,1≤j≤n，n≥1.

Based on definition 3, the concurrent relation laws are given as follows. We divide the

concurrent relations into binary concurrent relations and multiplex concurrent relations.

1) Binary concurrent relations: The relation of two guarded expressions is connected with

a parallel composition operator, such as . || .Aa P b Q . According to the relation of the prefix

action a, b, and synchronous set A, we present six laws for parallel compositions.

668 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

Law 1 (zero element) 0 is a zero element; i.e., || 0 0AP  .

Law 2 (identity) √ is an identity; i.e., ||AP P√ .

According to Laws 1 and 2, we can obtain || 0 0A √ and ||A √ √ √.

Law 3 If ,a a A , then . || . ().(||)A Aa P a Q a P Q .

Law 4 (synchronous abnormality) If ,a b A and b a , then . || . 0Aa P b Q  .

According to laws 3 and 4, we know the actions in synchronous set A cannot be executed

independently. Thus, they must be executed synchronously with corresponding co-actions.

Law 5 If a A and b A , then . || . .(|| .)A Aa P b Q a P b Q .

Law 6 If ,a b A , then . || . .(|| .) .(. ||)A A Aa P b Q a P b Q b a P Q  .

Laws 5 and 6 indicate that actions outside the set A execute asynchronously, and that

parallel composition operators (||A) can be ultimately transformed into alternative

composition operators (+).

2) Multiplex concurrent relations: The relations of guarded expressions are connected with

multiple composition operators, such as (.), (+), and (||A).

Law 7 If ,a a A , then (. .) || . ().(||)A Aa P b Q a R a P R 

.

Law 7 indicates that synchronous operations will be performed preferentially when the

synchronization condition is met. It is then easy to reach the following conclusion.

If , , ,a a b b A , then
(. .) || (. .)

().(||) ().(||)

A

A A

a P b Q a R b S

a P R b Q S 

  



.

If , , ,a b c d A , then

(. .) || (. .)

.(|| (. .)) .(|| (. .))

.((. .) ||) .((. .) ||)

A

A A

A A

a P b Q c R d S

a P c R d S b Q c R d S

c a P b Q R d a P b Q S

  

  

   

.

Law 8 If ,a a A , then
. || . || .

().(|| . ||) ().(. || ||)

A A

A A A A

a P a Q a R

a P a Q R a a P Q R 




.

Law 8 indicates that if the process .a P and .a Q are competitive for .a R , they must be

concurrent with .a R separately.

The other forms of multiplex concurrent relations can be summed up by the above two

relations. Law 7 and law 8 constitute the minimum complete law set of multiplex concurrent

relations.

Next we give the other migration rules. According to law 3, law 7, and law 8, we know if

,a a A , then

(). || . ||a

A Aa P a Q P Q

()(. .) || . ||a

A Aa P b Q a R P R 

(). || . || . . || ||a

A A A Aa P a Q a R a P Q R .

Thus we can obtain migration rule 2 by combining this with migration rule 1.

Migration rule 2: If ,a a A , then
1

()
|| ||. . ja

Ai

i

j

n

j Ai a Ra P P R




 , 1≤j≤n，n≥1.

According to law 5, we know that if a A and b A , then . || . || .a

A Aa P b Q P b Q .

According to law 6, we know that if ,a b A , then . || . || .a

A Aa P b Q P b Q and

. || . . ||b

A Aa P b Q a P Q .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 669

According to migration rules 1 and 2, the following migration can lead to system halt,

causing an abnormality.

Path abnormality 2: If
ia c and

ib c , then
1 1

|. 0.|
n m

i i k

c

A k

i k

a P b R
 

  .

4.4 Running State Set

We denote the part of the process expressions left of the equal sign as a process label to

describe the process state. To record the running states of the application, we construct the

running state set rsSet, consisting of distributed applications state appState, thusly:

rsSet={appState}, appState={appType,riLink}. Here, appType is the application type

identifier, and riLink is the pointers that point to running instance ri.

ri={instanceID,proLabelSet,next}. Here, instanceID is the running instance identifier, and

each running instance has a unique identifier that corresponds with the IP address and port

number of the deployment node. proLabelSet is the process state set of the current running

instance, consisting of process label. An application can have multiple running instance ri,

and next represents the pointers pointing to the next ri that has the same appType. The

construction algorithm is as follows.

(a) Initialize the rsSet so it is empty.

(b) If the process expression contains (||A), then we add the process label on both sides of

the (||A) into rsSet.

The rsSet will be updated continually when detecting a system call syscall during the

detection phase.The updating algorithm is as follows.

Input: the awaiting detection system call syscall; running state set rsSet.

Output: running state set rsSet.

Algorithm description:

 Pe Cp,Mp,P,Q； /* declaration process expression */

 appType atype;

 instanceID iid;

 processLabel pl;

 atype=GetappType(syscall); /*access the application type identifier of syscall */

 iid=GetinstanceID(syscall); /*access the running instance identifier of syscall */

 if(pl=FindProcessID(atype,iid,rsSet)) /*if the rsSet have not the current running

instance，then alert */

 alert(); /* abnormality, quit, alert */

 Cp=GetPe(pl); /* access the process expression according to pl */

if(Cp contain ||A){

 P=leftprocessLable(Cp);

 Q=rightprocessLable(Cp);

 rsSet.insert(P);

 rsSet.insert(Q);

}

else{

 Mp=migration(Cp); /* process migration function */

 rsSet.delete(Cp);

 rsSet.insert(Mp)；

}

Return rsSet;

670 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

The migration method in the algorithm is given in Section 5.2, shown in Fig. 4.

5. Anomalous Behavior Detection and Analysis

In this section, we report the results of behavior detection. The performance of the proposed

method is evaluated experimentally.

5.1 Extraction of System Call Sequences

There are two situations for extracting system call sequences.

1) When detecting the behaviors of a monitoring node, such as the get-ticket client, the

system call sequences at runtime are marked as awaiting detection actions.

2) When detecting the interaction behaviors of multiple monitoring nodes, if the

monitoring nodes have a global clock, then the system call sequences of monitoring nodes

will combine into one sequence according to the global clock. If these monitoring nodes do

not have a global clock, then the events of distributed applications that happen later may be

marked with an earlier time tag. We use the time stamp ordering method proposed by

Lamport [2] to combine the events into one sequence by logical time sequence.

5.2 Detecting Anomalous Behavior

5.2.1 Behavior Detection Algorithm

The primary steps of the detection algorithm are shown in Fig. 4.

Initialize

rsSet

?a A

?b A

Migration rule 2

yes

yes

yes

Trigger synchronous

abnormality and alert

no

Read a waiting for

detecting systemcall

Read the next waiting for

detecting systemcall b

?b a

yes

no

Trigger path

abnormality 2 and

alert

no

no
Is the systemcall

matched with prefix action of

the process expression?

Trigger path abnormality

1 and alert

no

Migration rule 1

yes

query rsSet and determine the
process expression associated

with the systemcall a

Is the systemcall

matched with prefix action of

the process expression?

Update rsSet

Is the systemcall b

matched with prefix action of

the process expression?

yes

no

Fig. 4. The behavior detection flow chart

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 671

Its main idea is described as follows.

Input: the action sequences extracted according to the methods in Section 5.1;

Output: some alarm information, such as detection log, abnormal system call, and the

current rsSet.

1) Initialize rsSet and read the action sequences in turn for detecting.

2) Query the running state set rsSet on the basis of system call information and obtain the

running state of distributed applications. Then query the normal behavior database (files

*.pe), finding the process expressions associated with the system call.

3) Match the system call with the prefix action of process expressions. If match is

successful, then proceed to 4). Otherwise, alert and save the information.

4) Migrate the running state according to the migration rules (files *.pm) and update the

migrated state into the running state set rsSet.

5) Read out the next system call and go to 2).

5.2.2 Behavior Detection Analysis

We analyze the queue management system of a bank in Fig. 2 and capture the system call

sequences for get-ticket client, call-ticket clients, and server at runtime, as shown in Fig. 5.

We capture system calls and their parameters according to Table 1. Then, we analyze the IP

address and port information of the local and destination hosts and make them correspond

with the running instance identifier, replacing the original parameters of system calls with the

running instance identifier, as shown in Fig. 5. We bind a system call to its appType and

instanceID, for example, {accept(2,1),S,1}. That means the appType of the system call accept

is S. Similarly, the instanceID of the system call accept is 1. The instanceID of the running

instance identifier that interacts with the system call accept is 2.

Get-ticket client: (IP:202.206.251.61,

 port:7839, appType:G, instanceID:2)

{ connect(1) , G , 2 } , { send(1) , G , 2 } ,

{recv(1),G,2}, {send(1),G,2}, {recv(1),G,2}…

Call-ticket client: (IP:202.206.251.62,

 port:7840, appType:C, instanceID:3)

{ c onnect(1) , C , 3 } , { send(1) , C , 3 } ,

{recv(1),C,3}, {send(1),C,3}, {recv(1),C,3}…

Server: (IP:202.206.251.60, port:7838, appType:S, instanceID:1)

{accept(2,1),S,1}, {pthread_create,S,1}, {recv(2),S,1},{accept(3,1),S,1}, {pthread_create,S,1},

{send(2),S,1}, {recv(3),S,1},{lock(mut),S,1}, {send(3),S,1} , {unlock(mut),S,1}…

Fig. 5. System call sequences at runtime

We use the method in Section 5.1 to obtain the system call sequences as follows.
{connect(1),G,2},{accept(2,1),S,1},{pthread_create,S,1},{send(1),G,2},{recv(2),S,1}, {connect(1),

C,3}, {accept(3,1),S,1},{pthread_create,S,1},{send(2),S,1},{recv(1),G,2},{send(1),C,3},{recv(3),S,

1},{lock(mut),S,1}, {send(3),S,1}, {recv(1),C,3}, {unlock(mut),S,1} …

The above system call sequences are read in turn, matching with the process expressions

(0 0 0|| ||QMS A AP G C S) of the queue management system. Meanwhile, process migrates

according to migration rules. The behavior detection procedures are described in Fig. 6. We

use the method in Section 4.2.2.1 to obtain the parameters’ relation of process expressions in

Fig. 6. The numbered arrows in the figure stand for detection steps. The detection steps are

given for the first 10 times. For example, for the first detection read out {connect(1),G,2}, the

type identifier of its application is G (get-ticket client), and the current running instance

identifier is 2. The initial state is rsSet={{G，{2，{G0}} },{C,{3,{ C0}} }, {S,{1,{ S0}} } }, and

thus the process expression G0 is associated with the system call connect(1). According to

672 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

Fig. 4, we know the awaiting detection action connect(1) belongs to the synchronous actions

set A . Therefore, the next system call accept(2,1) needs be read out, so the process migrates

according to migration rule 2; i.e., G0 migrates to G1 and S0 migrates to S1, updating rsSet.

Then go to step 2. The red number in the box is the running instance identifier.

Get-ticket client:

G0=connect(g,s).G1

G1=send(g,s).G2+close.G3

G2=recv(g,s).G1

G3=exit.G4

G4=√

Call-ticket client:

C0=connect(c,s).C1

C1=send(c,s).C2+close.C3

C2=recv(c,s).C1

C3=exit.C4

C4=√

Server:

S0=accept(s,g|c).S1

S1=pthread_create.S8 +close.S7

S2=recv(s,g|c).S3

S3=send(s,g).S2+lock(m).S4 +close.S5

S4=send(s,c).S6

S5=pthread_exit.S7

S6=unlock(m).S2

S7=√
S8= S0||AS2=accept(s,g|c).S1||A recv(s,g|c).S3

①

① ②
③

③

④

④

⑤

⑥

⑥

⑦

⑧⑨

⑩

2

1

3

⑦
⑨

Fig. 6. Behavior detection procedures

Initial state: rsSet={{G，{2，{G0}} },{C,{3,{ C0}} }, {S,{1,{ S0}} } };

Step①: systemcall: {connect(1),G,2},{accept(2,1),S,1};

rsSet={{G，{2，{G1}} },{C,{3,{ C0}} }, {S,{1,{ S1}} } };

Step②: systemcall: {pthread_create,S,1};

rsSet={{G，{2，{G1}} },{C,{3,{ C0}} }, {S,{1,{ S0 , S2}} } };

Step③: systemcall: {send(1),G,2},{recv(2),S,1};

rsSet={{G，{2，{G2}} },{C,{3,{ C0}} }, {S,{1,{ S0 , S3}} } };

Step④: systemcall: {connect(1), C,3}, {accept(3,1),S,1};

rsSet={{G，{2，{G2}} },{C,{3,{ C1}} }, {S,{1,{ S1 , S3}} } };

Step⑤: systemcall: {pthread_create,S,1};

rsSet={{G，{2，{G2}} },{C,{3,{ C1}} }, {S,{1,{ S0 , S2 , S3}} } };

Step⑥: systemcall: {send(2),S,1},{recv(1),G,2};

rsSet={{G，{2，{G1}} },{C,{3,{ C1}} }, {S,{1,{ S0 , S2 }} } };

Step⑦: systemcall:,{send(1),C,3},{recv(3),S, 1};

rsSet={{G，{2，{G1}} },{C,{3,{ C2}} }, {S,{1,{ S0 , S3 }} } };

Step⑧: systemcall: {lock(mut),S,1};

rsSet={{G，{2，{G1}} },{C,{3,{ C2}} }, {S,{1,{ S0 , S4 }} } };

Step⑨: systemcall: {send(3),S,1} , {recv(1),C,3};

rsSet={{G，{2，{G1}} },{C,{3,{ C1}} }, {S,{1,{ S0 , S6 }} } };

Step⑩: systemcall: {unlock(mut),S,1};

rsSet={{G，{2，{G1}} },{C,{3,{ C1}} }, {S,{1,{ S0 , S2 }} } };

The matching procedure of system calls is described as follows.

1) Query rsSet and determine the process expression associated with the systemcall.

Does the systemcall name match the prefix action name of the process expression？
If the match is successful, then turn to (2).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 673

2) Match the parameters of system calls with the parameters of process expressions. For

instance, for {connect(1),G,2}, its appType is G, the instanceID of running instance identifier

that interacts with it is 1, and its appType is S. Therefore, it successfully matches with

connect(g,s). Note: While application types, such as G and S, are not case sensitive, we

define the parameters of system calls with capital letters and define the action parameters of

process expressions with lower-case letters.

If the system call sequences all match correctly, then the behavior is normal. If the

matching procedure causes one of the abnormalities in Section 4.4, then an alert is generated.

Moreover, according to the abnormal system call and the current rsSet, we can determine the

associated process expression of the abnormal system call and the interactive processes, and

then we can determine the location and scope of abnormal anomalous behavior nodes.

If a new node is connected during the detection phase, then we add its state into the

running state set rsSet. For instance, when a call-ticket node number 4 connects with the

server, rsSet={{G，{2，{G1}} },{C,{(3,{ C2}),(4,{C1})} }, {S,{1,{ S0, S4 }} } }. If a node is

disconnected, then its state will be deleted from the running state set rsSet. In this way, the

dynamic change of nodes will be dealt with well.

5.2.3 Detecting Intrusion

The sample code for the main function in the server is given in Section 5.2.2, whose function

is used to invoke call-ticket or get-ticket. If the first character is a carriage return, then the

call-ticket handling function is summoned. If the first character is A, then the get-ticket

handling function is invoked. However, if the data packets from the get-ticket client were

intercepted by anomalous behavior—such as if their character A is sullied by a carriage

return character—the server remains rigid in determining their behavior according to the

character. Although such an intrusion can happen, our model is effective in detecting it.

Under these circumstances, our model can capture the system call sequences as follows.

…{send(1),G,2},{recv(2),S,1},{connect(1),C,3},{accept(3,1),S,1},{pthread_create,S,1},{loc

k(mut),S,1},{send(2),S,1},{recv(1),G,2},{unlock(mut),S,1} …

When {lock(mut),S,1} is detected during the detection phase, it is easy to know the

running state of the server is S3 from Fig. 6. It can successfully match with the prefix action

lock(m). Thus, the process migrates to S4 and then matches with the next system call

{send(2),S,1} and prefix action send(s,c). Here the running instance identifier that interacts

with system call send is 2, and the corresponding appType is G rather than C. From Fig. 6 we

can see how noticeable intrusions are, and how easy anomalies are to detect.

5.3 Anomalous Behaviors Detection Analysis

A brief discussion on the relationship of several common attack types and exception types is

as follows.

1) Code injection attacks.

Code injection attacks are the attackers from local or remote to insert dangerous

executable shell code into an address space of the process, and then by some means to

modify control flow of the process, make the process execute this shell code, eventually

achieving the purpose of attacking behavior. Such as the buffer overflow attacks, the format

string misuse and double-free. These kinds of attacks will trigger the path abnormality 1 and

the path abnormality 2.

2) Impossible path attacks.

Impossible paths exist when multiple different call sites to the same target procedure exist.

In order to achieve this kind of attack, the attackers need to construct the call stack to save

function return address, and they may implement by injecting code. Once the impossible

674 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

paths occurred, they will trigger path abnormality 1.Moreover, they may be trigger the other

abnormities supposing that the attackers achieve their purposes indirectly by injecting code.

3) Mimicry attacks.

Mimicry attacks are that the attackers modify the parameters of system call using the

rightful system call sequences to achieve the attack purpose. Our model only analyses the

interactive action parameters of system call sequences, thus it can not detect the mimicry

attacks. We will research on a wider range of data flow analysis to overcome this

shortcoming in the future.

4) Denial of Service attacks / Distributed Denial of Service attacks.

According to the action mechanism, denial of service attacks / distributed denial of service

attacks can be divided into resource depletion denial of service attacks and denial of service

attacks based on the abnormality. The former refer to the attackers exhaust system resources

by a large number of inputs, for example, setting up a large number of network connections,

forcing process processing large files, etc. These kinds of attacks typically applied to

distributed denial of service attacks, and they can not trigger the abnormality, thus our model

can not detect these kinds of attacks. However, the latter depend on the specific defect of the

process, for instance, infinite loops owing to the integer overflow. These kinds of attacks

need to change the control flow of process to achieve the attack purpose, and they can trigger

the path abnormality 1 and the path abnormality 2, thus they can be detected by our model.

5) The man-in-the-middle attacks.

The man-in-the-middle attack (MITM) requires an attacker to have the ability to both

monitor and alter or inject messages into a communication channel. The attacker can

intercept all relevant messages passing between the two victims and inject new ones. These

kinds of attacks can cause the actions of the relevant nodes do not synchronize, and trigger

the synchronous abnormality (Law 4).

6) Man-at-the-end attacks.

Man-at-the-end (MATE) attacks occur in settings where an adversary has physical access

to a device and compromises it by tampering with its hardware or software. Remote man-at-

the-end (R-MATE) attacks occur in distributed systems where un-trusted clients are in frequ-

ent communication with trusted servers over a network, and malicious users can get an adva-

ntage by compromising an un-trusted device. These kinds of attacks also need to change the

control flow of process to achieve the attack purpose, and they can trigger the path abnorm-

ality 1 and the path abnormality 2, thus they can be detected by our model.

5.4 Comparative Study of Previous Approaches

The existing security paradigms proposed for distributed applications are aimed at some spe-

cific attacks, such as DOS/DDOS attacks and Remote Man-at-the-end (R-MATE) attacks. A

comparative study on previously schemes is presented in Table 2.

Table 2. Comparative study of previous approaches

Ref
Detection

Technique

Detection

Time
Architecture Coverage Pros Cons

This

Work

Anomaly

Based

Online Host

Network

Distributed

Computers,

Networks,

Cloud

computing,

Distributed

application.

Distributed

operations,

Multi-threaded

processing,

Real time

detection.

Could not detect

the mimicry

attack and attacks

based on

data-flow.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 675

[4] Anomaly

Based

Online Host

Network

Distributed

Cloud

computing

Multi-threaded

cloud IDS.

Works only for

Cloud computing

[5] Anomaly

Based

Online Distributed Distributed

application

Distributed

operations,

Against

Remote

Man-at-the-end

(R-MATE)

attacks.

Could not detect :

The programs in

which the client

does not need to

frequently

communicate

with the server;

The applications

which need to

completely

prevent any

tampering of

client code.

[6] Misuse

&

Anomaly

Based

Online

& Offline

Host

Network

Distributed

Computers,

Networks,

Cloud

computing,

Distributed

application.

Hybrid

detection,

Distributed and

non-distributed

operations,

Multi-threaded

processing,

Real time

detection.

High

computation cost

We also compare the precision of the above schemes and the result is presented in Table 3.

Table 3. Comparison of detection precision for schemes

Attacks Our scheme Ref[4] scheme Ref[5] scheme Ref[6] scheme

Code injection attacks Yes No No Yes

Impossible path attacks Yes No No No

Mimicry attacks No No No No

DOS/DDOS Yes/No Yes No Yes

The man-in-the-middle attacks Yes No No Yes

Remote Man-at-the-end

(R-MATE) attacks

Yes No Yes No

As can be seen from Table 3, the precision of our scheme is better than the other schemes.

But our scheme is better suited for an application to distributed applications that pay close

attention to perform orders and logical, such as mission critical system.

5.5 Performance Evaluation

5.5.1 Theory Analysis

We adopt two algorithm methods to search the adjacency list: depth-first and breadth-first.

No matter which algorithm is used, the time complexity of the adjacency list is the same:

O(n+e), where n denotes the number of vertices and e denotes the number of adjacency

edges. Obviously, the space complexity of the adjacency list is also O(n+e). If we store a set

of m concurrent processes, the space and time complexity is O(m). Thus, the total space and

time complexity is O(n+e+m); that is to say, the proposed method has linear space–time

complexity. Moreover, the running costs do not increase significantly with the increasing of

application scale.

676 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

5.5.2 Experimental Analysis

We use Hadoop for the test objects and deploy a Hadoop computer cluster. Next we

investigate a benchmark test case for WordCount, Sort and Pi, using 3, 6, 9, and 12 Slave

nodes, as well as the Master node. We record the cost of time and space that the process of

modeling and detection incurs. Our runtime environment is as follows: one server running

Linux OS (rhel-server-5.4) on an Intel 2 GHZ six-core CPU with 8GB of RAM, as the

Master node, and twelve hosts running Linux OS (rhel-server-5.4) on Intel 1.73 GHZ dual

core CPUs with 2 GB of RAM, as the Slave nodes. We use the properties of three benchmark

test cases listed in Table 4.

Table 4. The properties of benchmark test case

Program Functional description Workload

WordCount
A map/reduce program that counts the

words in the input files
Counting 10,000,000 words

Sort
A map/reduce program that sorts data

written by the random writer

Randomly generating and

sorting 100MB per node

Pi
A map/reduce program that estimates pi

using the Monte Carlo method
Calculating pi

We obtain the time and space overhead in the modeling phase, as shown in Fig. 7.

Similarly, the time and space overhead in the detection phase are shown in Fig. 8 and Fig. 9

respectively. Program execution times are to record in seconds. The base execution time has

no modeling and detection operation. Percentages compare against base execution.
As can be seen from experimental results, the time and space overheads of our model

increase linearly in the detection phase, which basically was anticipated. The time and space

overhead of the model are high in the modeling phase because of performing a large number

of calculations. However, the time and space overhead of our detection model are

satisfactory in the detection phase.

0

8

16

2

4

wordcount pi

Space overhead

O
v
e

rh
e

a
d

(%
)

sort

Time overhead

0

4

8

1

2

3 nodes 9 nodes 12 nodes

sort

pi

O
v
e

rh
e

a
d

(%
)

6 nodes

wordcount

Fig. 8. The time overhead in the detection phase

Fig. 7. The time and space overhead in the modeling phase

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 677

0

4

8

1

2

3 nodes 9 nodes 12 nodes

sort

pi

O
v
e

rh
e

a
d

(%
)

6 nodes

wordcount

6. Conclusions

In this paper, the problem of providing safe, efficient parallel implementations of distributed

applications is investigated. We presented a method for anomalous behavior detection using

system call sequences. Normal behaviors were defined in terms of system call sequences

executed by running privileged processes. We use process algebra to describe behaviors of

distributed applications and detect behaviors based on process expressions. Our profiles of

normal behaviors, which were generated using process expressions rewritten by eliminating

nondeterminism and adding concurrency operators, were precise and complete. The

architecture of our model was specified, using a bank queue management system as an

example to describe the procedure of the detection algorithm. Behavior detection and

analysis results show that our method is a good discriminator between normal and

anomalous behavior characteristics of distributed applications. Performance evaluation

shows that the proposed method enhances efficiency without security degradation.

References

[1] D. Caromel and L.A. Henrio, “Theory of Distributed Objects,” Berlin:Springer-Verlag, 2005.

Article (CrossRef Link).

[2] Leslie Lamport, “Time, clocks, and the ordering of events in a distributed system,”

Communications of the ACM, vol. 21, no.7, pp. 558-565, July, 1978. Article (CrossRef Link).

[3] C. C. Din, J. Dovland, E.B. Johnsen, and O. Olaf, “Observable behavior of distributed systems:

Component reasoning for concurrent objects,” The Journal of Logic and Algebraic

Programming, vol. 81, no. 3, pp. 227-256, April, 2012. Article (CrossRef Link).

[4] I Gul and M. Hussain, “Distributed cloud intrusion detection model,” International Journal of

Advanced, vol. 34, pp. 71-82, September, 2011. Article (CrossRef Link).

[5] C. Collberg, S. Martin, J. Myers and J. Nagra, “Distributed application tamper detection via

continuous software updates,” in Proc. of the 28th Annual Computer Security Applications

Conference. ACM, pp. 319-328, December, 2012. Article (CrossRef Link).

[6] F. Idrees, M. Rajarajan and A. Y. Memon, “Framework for distributed and self-healing hybrid

intrusion detection and prevention system,” in Proc. of ICT Convergence (ICTC), International

Conference on. IEEE, pp. 277-282, October, 2013. Article (CrossRef Link).

[7] J. Meseguer and P. C. Ö lveczky, “Formalization and correctness of the PALS architectural

pattern for distributed real-time systems,” Formal Methods and Software Engineering. Springer

Berlin Heidelberg, vol. 6447, pp. 303-320, 2010. Article (CrossRef Link).

[8] W. Tao, S. Liming and M. Chuan, “A Process Algebra-Based Detection Model for

Multithreaded Programs in Communication System,” KSII Transactions on Internet and

Fig. 9. The space overhead in the detection phase

http://link.springer.com/content/pdf/10.1007/b138812.pdf
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1016/j.jlap.2012.01.003
http://dx.doi.org/10.1016/j.jlap.2012.01.003
http://www.sersc.org/journals/IJAST/vol34/8.pdf
http://dl.acm.org/citation.cfm?id=2420997
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6675357&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6675357
http://link.springer.com/chapter/10.1007/978-3-642-16901-4_21

678 Chen et al.: An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

Information Systems, vol. 8, no. 3, pp. 965-983, March, 2014. Article (CrossRef Link).

[9] J.Chu, “The Triple Pot and techniques in distributed system call intrusion detection,” University

of Illinois at Urbana-Champaign, 2014. Article (CrossRef Link).

[10] S. Forrest, S.A. Hofmeyr, A. Somayaji and T.A. Longstaff, “A sense of self for UNIX

processes,” in Proc. of the IEEE Symp. on Security and Privacy. Oakland: IEEE Press, pp.

120-128, May 6-8, 1996. Article (CrossRef Link).

[11] S.A. Hofmeyr, S. Forrest and A. Somayaji. “Intrusion detection using sequences of system

calls,” Journal of Computer Security, vol. 6, no. 3, pp. 151-180, January, 1998.

Article (CrossRef Link).

[12] P. Helman and J.Bhangoo, “A statistically based system for prioritizing information exploration

under uncertainty,” IEEE Trans.on Systems,Man and Cybernetics, Part A:Systems and Humans,

vol. 27, no. 4, pp. 449-466, July, 1997. Article (CrossRef Link).

[13] W. Lee and S.J. Stolfo, “Data mining approaches for intrusion detection,” in Proc. of the 7th

USENIX Security Symp. San Antonio, pp. 26-29, January, 1998. Article (CrossRef Link).

[14] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in Proc. of the IEEE Symp.on

Security and Privacy.Oakland:IEEE Press, pp. 156-168, May 14-16, 2001.

Article (CrossRef Link).

[15] J. Giffin, S. Jha and B. Miller, “Efficient context- sensitive intrusion detection,” in Proc. of the

11th Network and Distributed System Security Symp. San Diego, 2004. Article (CrossRef Link).

[16] R. Gopalakrishna, E.H. Spafford and J. Vitek, “Efficient intrusion detection using automaton

Inlining,” In Proc. of the IEEE Symp.on Security and Privacy. Oakland, CA, IEEE Press, pp.

18-31, May 8-11, 2005. Article (CrossRef Link).

[17] F. Jianming, T. Fen, and W. Dan, “Software behavior model based on system objects,” Journal

of Software, vol. 22, no. 11, pp. 2716-2728, November, 2011. Article (CrossRef Link).

[18] H.H. Feng, J.T. Giffin, Y. Huang and S. Jha, “Formalizing sensitivity in static analysis for

intrusion detection,” In Proc. of the IEEE Symp.on Security and Privacy. Oakland, CA, IEEE

Press, pp. 194-208. May 9-12, 2004. Article (CrossRef Link).

[19] M. Moshirpour, A. Mousavi and B. H. Far, “Detecting emergent behavior in distributed systems

using scenario-based specifications,” International Journal of Software Engineering and

Knowledge Engineering, vol. 22, no. 06, pp. 729-746, September, 2012.

Article (CrossRef Link).

[20] F. Yang, T. Aotain, H. Masuhare, et al., “Combining static analysis and runtime checking in

security aspects for distributed tuple spaces,” Coordination Models and Languages. Springer

Berlin Heidelberg, vol. 6721, pp. 202-218, June 6-9, 2011. Article (CrossRef Link).

[21] D. Gupta, K. V. Vishwanath, M. McNett, et al., “DieCast: Testing distributed systems with an

accurate scale model,” ACM Transactions on Computer Systems (TOCS) , vol. 29, no. 2, Article

No.4 , May, 2011. Article (CrossRef Link).

[22] J. Tan, S. Kavulya, R. Gandhi, et al., “Light-weight black-box failure detection for distributed

systems,” in Proc. of the 2012 workshop on Management of big data systems. ACM, pp.13-18,

2012. Article (CrossRef Link).

[23] M. Rohr, A. van Hoorn, W. Hasselbring, et al., “Workload-intensity-sensitive timing behavior

analysis for distributed multi-user software systems,” Proceedings of the first joint

WOSP/SIPEW international conference on Performance engineering. ACM, pp. 87-92, 2010.

Article (CrossRef Link).

[24] M. Moshirpour, R. Alhajj, M. Moussavi, and B. H. Far, “Detecting emergent behavior in

distributed systems using an ontology based methodology,” In Systems, Man, and Cybernetics

(SMC), IEEE International Conference on. IEEE, pp. 2407-2412, October, 2011.

Article (CrossRef Link).

[25] J.H. Morris, “Lambda-calculus Models of Programming Languages,” MIT, Cambridge, MAC, U

SA, 1968. Article (CrossRef Link).

[26] G.J. Milne and R. Milner, “Concurrent processes and their syntax,” Journal of the ACM, vol. 26,

no. 2, pp. 302-321, April, 1979. Article (CrossRef Link).

http://www.dbpia.co.kr/Journal/ArticleDetail/3531942
https://www.ideals.illinois.edu/handle/2142/49411
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hofmeyr,%20S.A..QT.&searchWithin=p_Author_Ids:37355644600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Somayaji,%20A..QT.&searchWithin=p_Author_Ids:37357125900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Longstaff,%20T.A..QT.&searchWithin=p_Author_Ids:37324010000&newsearch=true
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=502675&reason=concurrency
http://iospress.metapress.com/content/m19jj5lnhbeb0bvf/
http://dx.doi.org/10.1109/3468.594912
https://www.usenix.org/legacy/publications/library/proceedings/sec98/full_papers/full_papers/lee/lee_html/lee.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=924296&tag=1
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Giffin.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1425056
http://dx.doi.org/10.3724/SP.J.1001.2011.03923
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jha,%20S..QT.&searchWithin=p_Author_Ids:37279267300&newsearch=true
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1301324
http://dx.doi.org/10.1142/S0218194012400104
http://link.springer.com/chapter/10.1007/978-3-642-21464-6_14
http://dl.acm.org/citation.cfm?id=1963560
http://dl.acm.org/citation.cfm?id=2378360
http://dl.acm.org/citation.cfm?id=1712621
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6084038&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6084038
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0683394
http://dx.doi.org/10.1145/322123.322134

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 2, February 2015 679

[27] J. C. M. Baeten, “A brief history of process algebra,” Theoretical Computer Science, vol.335, no.

2, pp. 131-146, May, 2005. Article (CrossRef Link).

[28] R. Milner, “A calculus of communicating systems,” Lecture Notes in Computer Science,

Springer-Verlag New York, Inc. Secaucus, NJ, USA, 1980. Article (CrossRef Link).

[29] C. Hoare, “Communicating sequential processes,” Communications of the ACM , vol. 21, no. 8,

pp. 666-677, August, 1978. Article (CrossRef Link).

[30] J. Hopcroft, “An nlogn algorithm for minimizing states in a finite automaton,” Theory of

Machines and Computations, New York: Academic Press, January, 1971.

Article (CrossRef Link).

Chuan Ma is currently having his Ph.D study in Information Science and Engineering,

Yanshan University. He received his B.S. and M.S. degrees in the School of Information

Science and Engineering, Yanshan University, Qinhuangdao, China in 2003 and 2009,

respectively. He is now working at the School of Information Science and Engineering

Yanshan University as a lecturer. His current research interests include information security

and software formal methods.

Limin Shen is currently a professor in the School of Information Science and Engineering,

Yanshan University. He received his M.S. degree in computer application, Hefei University

of Technology, China, in 1987. He received his Ph.D degree in electronic circuit and system,

Yanshan University, China, in 2005. He worked in Department of Computer Science,

Illinois Institute of Technology, USA from 2005 to 2007 as a visiting scholar. His main

research interests are focusing on flexible software technology and information security,

which has been funded partially by the National Natural Science Foundation of China and

Chinese Government.

Tao Wang is currently having her Ph.D study in Information Science and Engineering,

Yanshan University, Qinhuangdao, Hebei, China. She received her M.S. degree in the

School of Information Science and Engineering, Yanshan University, Qinhuangdao, China

in 2009. She is now working at Hebei Normal University of Science & Technology as a

lecturer. Her current research interests are in the areas of intrusion detection and

collaboration computing.

http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1016/B978-0-12-417750-5.50022-1

