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Abstract 

 
Distributed applications are composed of multiple nodes, which exchange information with 

individual nodes through message passing. Compared with traditional applications, 

distributed applications have more complex behavior patterns because a large number of 

interactions and concurrent behaviors exist among their distributed nodes. Thus, it is difficult 

to detect anomalous behaviors and determine the location and scope of abnormal nodes, and 

some attacks and misuse cannot be detected. To address this problem, we introduce a method 

for detecting anomalous behaviors based on process algebra. We specify the architecture of 

the behavior detection model and the detection algorithm. The anomalous behavior detection 

and analysis demonstrate that our method is a good discriminator between normal and 

anomalous behavior characteristics of distributed applications. Performance evaluation 

shows that the proposed method enhances efficiency without security degradation. 
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1. Introduction 

With the popularity and deepening of the network, distributed computing has to expand 

from its origins in shared-memory computing and local area networks to a wider context [1]. 

A distributed application is a program distributed on independent computers that exchange 

information with individual nodes by message passing to accomplish a common task. 

Compared to the traditional applications, distributed applications have many advantages such 

as providing increasingly complex functionality and acceptable performance that require 

parallelizing their operations on individual nodes. Unfortunately, a large complex behavior 

patterns appear in the distributed applications due to the nodes changing frequently [2]. 

Nowdays, distributed systems have become an increasingly important platform for providing 

multiple services, for example, distributed systems form the basis for critical infrastructure in 

different domains such as finance, medicine, aeronautics, telephony, and Internet services. 

The quality of such distributed systems is often crucial [3]. However, the development 

process of distributed applications is difficult and inefficiency. Its development cycle is long, 

and it is difficult to avoid and find implicit errors and defects. Meanwhile, hackers 

continually explore and develop new methods to perform attacks on distributed systems. 

Therefore, security for distributed applications is a concern, and providing safe, efficient 

parallel implementations of distributed applications remain a challenge. 

There are many different security paradigms to protect distributed applications from some 

attacks. Irfan Gul and M. Hussain proposed an efficient multi-threaded distributed cloud IDS 

model to handle large scale network access traffic, avoiding sophisticated distributed 

intrusion attacks like Distributed Denial of Service (DDOS) [4]. Collberg et al. present a new 

general technique for protecting clients in distributed systems against Remote 

Man-at-the-end (R-MATE) attacks [5]. Idrees et al. proposed framework is an amalgamation 

of some of the existing state-of-the-art intrusion detection and prevention technologies for 

detection and prevention of known and unknown network and cloud computing 

vulnerabilities [6]. Many distributed real-time systems are often safety-critical and need to be 

certified, however their certification is hard due to their distributed nature. Meseguer et al. 

presented a formal model transformation that maps a synchronous design to reduce the 

design and verification complexities of achieving virtual synchrony [7]. Several assumptions 

have usually been overemphasized in the above security paradigms: That security policy can 

be distinctly and correctly specified, that distributed applications can be correctly 

implemented, and that systems can be correctly configured. In fact, distributed applications 

are not static: their distributed nodes being continually changed by connecting or 

disconnecting; Applications are added and removed, and configurations are changed. 

Anomalous behaviors in distributed applications are often hard to find. Many anomalous 

behaviors reflect discrepancies between a system’s behavior and the programmer’s 

assumptions about that behavior. 

In this paper, we can improve security through detecting anomalous behaviors based on 

process algebra. This method is based on the assumption that distributed applications can be 

correctly designed, but that violations of security policy can be detected by monitoring and 

analyzing software behaviors. The basic steps are as follows: We obtain control flow graphs 

(CFG) of individual nodes by static binary code analysis. Then we transform the control flow 

graphs into the corresponding process expressions automatically by using the technique in 

our previous literature [8], and rewrite process expressions by eliminating the non 
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determinism and adding concurrency operators. Finally, we construct a behavior detection 

model of distributed applications and give the detection algorithm. 

The contributions can be summarized to the following four points.  

1) The interactions and concurrent behaviors of distributed applications can be described 

accurately. We apply process algebra to distributed applications behavior modeling, which is 

a profitable security paradigms attempt.  

2) We propose the concurrent mechanism in the distributed applications that is structured 

as synchronization process set and running state set. This reduces the complexity of behavior 

analysis and detection. 

3) Our model only maintains the linear list, and does not use the backtracking algorithm 

because the non determinism of process expressions was eliminated. This reduces the 

runtime overheads.  

4) We provide a formal analysis method for developers that are familiar or unfamiliar to 

distributed applications. And we also provide an anomalous behavior detection method for 

the system maintenance personnel. 

The structure of this paper is as follows. In Section 2, we review the previous work in 

analysis and detection methods for distributed applications. Section 3 introduces process 

algebra. Section 4 specifies the construction process of our model. The experimental 

evaluation is discussed in Section 5, and we conclude the paper in Section 6. 

2. Related Work 

Applications use system calls to gain access to functions from an operating systems kernel. 

Therefore, it is theoretically possible to detect when a hacker may be exploiting a program 

by analyzing system call patterns of an application [9]. Since the original development of a 

model that takes advantage of the system call sequence for normal behavior of a program 

was presented by Forrest et al. [10-11], many scholars have researched behaviors using the 

system call. By dynamic training or static analysis, scholars use the system call analysis for 

behavior analysis and detection. These techniques can be divided into three categories: 

system call short sequences [11-13], automata [14-17], and the Virtual Path [18]. Of these 

techniques, modeling based on system call short sequences is efficient and can be 

implemented easily. However, this method is imprecise, and these intrusion detection models 

are much more prone to false positives. Compared with short sequences, branch and loop 

structures of programs can be expressed. Modeling based on automata improves the 

precision of behavior modeling and reduces the false positive rate. Unfortunately, these 

models still have some limitations. For example, impossible paths, prohibitively high 

space–time complexity, and they are unsuitability for analyzing concurrent behaviors. 

There are many different analysis and detection methods for distributed systems. 

Moshirpour et al. proposed a method for detecting emergent behavior, which is an important 

issue in distributed systems' design [19]. Distributed and concurrent object-oriented 

applications are difficult to analyze due to the complexity of their concurrency, 

communication, and synchronization mechanisms. Din C. C. et al. established a proof system 

for partial correctness reasoning based on communication histories and class invariants, 

which allow components to be analyzed independently of their environment [3]. Yang Fan et 

al. designed an aspect-oriented programming language based on distributed tuple spaces to 

enforce security policies for distributed systems [20]. To address the problem of testing the 

large-scale network services for complex performance problems and configuration errors, 

Gupta et al. presented an approach to test distributed systems in which they multiplex all of 
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the nodes [21]. As modern data centers run a variety of applications, detecting failures in 

distributed systems have limited scalability, or have results that are hard to interpret. Tan et 

al. presented a light-weight technique to quickly detect performance problems in distributed 

systems using only correlations of OS metrics [22]. Rohr et al. introduced a workload 

intensity sensitive timing behavior analysis method for distributed multi-user systems, which 

consider inter-dependencies between concurrent execution operations within a distributed 

system to reduce the standard deviation for succeeding analysis steps [23]. Moshirpour et al. 

proposed the utilization of an ontology-based approach to detect emergent behavior in 

distributed systems by a set of message sequence charts [24]. These methods solve some 

problems in distributed systems at a certain aspect. 

In this paper, we address a distributed application that is composed of multiple computing 

subjects that accomplish computing tasks by cooperating with each other. The monitoring 

node in this paper refers to the deployment node of a distributed application—for instance, 

an application in a process space or an application deployed on a host. These nodes have a 

unified synchronous clock, so we can determine behavior traces by the occurrence order. 

3. Process Algebra 

Process algebra is a mathematical tool used for depicting concurrent systems [25-26], and is 

used for researching concurrent, distributed, interactive systems [27]. The "process" 

mentioned in process algebra refers to the behavior patterns that are shown by the distributed 

applications. That consists of a series of actions and the operators that are subordinate to the 

limited action set. This paper uses process algebra to describe the behaviors of distributed 

applications. We extract a common subset, the basic component of process algebra, 

containing the sequential composition operator (.), alternative composition operator (+), and 

parallel composition operator (||A).  Let A be a finite set of synchronous actions (A). The 

syntax specifications are defined as follows: 

1 2 1 2:: 0 | | . | | ||AP a P P P P P √  
Their corresponding meanings are as follows: 

1) 0 stands for the process down time, no action is performed.√stands for process 

terminated successfully.  

2) .a P  stands for prefix action a , then transformed into process P . Actions in this 

paper are the same as actions in CCS [28], divided into action ( a ) and co-action ( a ), 

obviously a a . The prefix action a can have parameters. 

3) 
1 2P P  stands for the choice of 1P  or 2P , according to the process subordinated by 

the following actions. 

4) 
1 2||AP P  means that if action ( a ) in 1P  and co-action ( a ) in 2P  are subordinated 

to set A , then 1P  and 2P execute synchronously, while any other actions are executed 

asynchronously. After 1P  and 2P executing, the actions are replaced by ( )a . 

Definition 1 Guarded Expression. The process expression begins with the prefix action. e.g., 

.P a Q .  

Definition 2 Behavior Trace. Suppose the process P can be defined as a finite state transition 

of the form: 11

0 1 1

n n

n n

a aa
P P P P P


   …  
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1 2
, ,

n
a a a … is the behavior trace of process P . The set of all possible behavior 

traces is denoted by ( )traces P . 

Definition 3 Process Equivalence. If P ， Q  are two different processes ， and 

( ( ) ( )traces P traces Q ), i.e., ( ) ( )traces P traces Q and ( )traces Q  ( )traces P , then these are 

denoted as process P ，Q  equivalent. 

The process algebra is used for describing behaviors of distributed applications in this 

paper. We detect behaviors base on process expressions; thus, the process equivalence is 

based on the behavior trace. If two processes have the same behavior trace, they are 

considered equivalent. This also meets the requirements for behavior detection. However, it 

differs from equivalence based on mutual simulation of CCS [28]. It also differs from 

equivalence based on refusal sets in CSP [29].  

4. Core Mechanisms 

The architecture of our model consists of a modeling unit and a detection unit, shown in Fig. 

1.  
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Fig. 1. Architecture of the model 

 

The input to the modeling unit is the binary code of distributed applications, used to 

generate CFGs of the monitoring nodes. The modeling unit contains the process for building 

the normal behavior database. Process expressions are obtained from the corresponding 

CFGs. We rewrite the process expressions to accurately describe the interaction behaviors 

and concurrent behaviors of distributed applications. The rewritten process expressions are 

deemed as normal behaviors, saved in files *.pe. The process migration rules are deduced 

from concurrent calculus rules and are saved in files *.pm, used for detecting anomalous 

behaviors. The input to the detection unit is the system call sequences monitored at runtime, 
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used as the detection source. The states of distributed applications constitute running state set 

rsSet. We use the files *.pe, files *.pm, and rsSet to detect the system call sequences 

extracted at runtime. Once an anomalous behavior is detected, the model will alert and 

determine the location and scope of abnormal nodes. 

4.1 Generating Process Expressions 

Based on IA32 platforms running the Linux OS, we use a bank queue management system as 

an example. The distributed systems consist of get-ticket client, call-ticket clients, and a server. 

The server maintains a user queuing list and listens to clients to create a thread for each 

connection. When the get-ticket client sends a request, the server adds the request 

information to the end of the queuing list. When the call-ticket clients send a request, the 

server takes out the head of the queuing list and deals with the new business. The processing 

procedure must be locked because there can be multiple call-ticket clients. We compile the 

example to binary code and use the EEL [15-16] method to generate the CFGs for each 

function of monitoring nodes. We eliminate the edges   of CFG using the previously 

reported reduction algorithm [30], merging each function CFGs of monitoring nodes into a 

global CFG. We capture part of the work flow in Fig. 2. The two actions connected by the red 

dotted line are complementary actions. 
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We denote the CFG as { , }G V E , where V denotes vertices and E denotes the directed 

edge that is marked with system calls. We store the CFG with an adjacency list, which keeps 

the system calls on the edge. We obtain the corresponding adjacency list for the CFG of the 

server, as shown in Fig. 3. 

The algorithm that transforms the CFGs into the corresponding process expression is 

given below. 

1) All the vertices v V  are denoted by process label. 

2) If ,i jv v V  and 
iv  reaches 

jv  exist, there exists an output edge e E , which 

generates the process expression .i jv e v . 

3) If on the vertices iv V  exist many output edges n(n ≥ 2), then each output edge 

defined in (2) generates a process expression, connected using the alternative composition 

operator: 
1 1. ... .i j j jn jnv e v e v   . 

4) If the vertices iv V  do not contain an output edge, that information is denoted by the 

successful terminated process mark √. 

We obtain the process expressions of the server based on the above algorithm. 

 
S0=accept.S1 

S1= pthread_create.S0+pthread_create.S2+ close.S7 

S2=recv.S3 

S3=send.S2+lock.S4 +close.S5 

S4=send.S6 

S5=pthread_exit.S7 

S6=unlock.S2 

S7=√ 

4.2 Rewriting Process Expressions 

4.2.1 Eliminating Nondeterminism 

The concept “nondeterminism” describes a finite automaton that exists in several states at the 

same time. Similarly, if the process expression contains an item that has the form . .a P a Q , 

it is nondeterminist. This kind of process expression can cause backtracking in the detection 

phase, reducing detection efficiency. Fortunately, we use an ingenious way to eliminate the 

nondeterminism. 

According to definition 3, we know the left distributive law of alternative composition 

operators is established, i.e., . . .( )a P a Q a P Q   . Thus we use P Q  as a new process to 

eliminate nondeterminism (examples below). 

S1 = pthread_create.S0 + pthread_create.S2 + close.S7 

= pthread_create.(S0+ S2) + close.S7 

= pthread_create.S8 + close.S7 

S8 = S0 + S2 = accept.S1 + recv.S3 

We eliminate nondeterminism by adding a new expression, S8. The effectiveness is similar 

to the automata theory; however, our method is more intuitive and easy to implement. 

4.2.2 Adding Concurrency Operators 

The function CFGs cannot express concurrency, so we must rewrite the process expressions 

to describe the concurrent characteristics of distributed applications. 
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4.2.2.1 Structure Synchronous Actions Set 

According to the concurrent operator 
1 2||AP P  in Section 3, we must determine synchronous 

actions set A  and its complementary actions. In order to accurately depict the behaviors of 

system calls, we need to capture and analyze arguments. For instance, we can determine 

whether the send and recv belong to the same socket channel. Then we can determine 

whether they are complementary actions. From 324 system calls (Linux-2.6.18 kernel), we 

extract the system calls that cause synchronous operation and analyze their arguments. Some 

of them are listed in Table 1, where the pairs accept and connect, send and recv are 

complementary actions. 

 
Table 1. Arguments capture and analysis for system calls 

System 

call 

Modeling phase Detection phase 

Arguments Description Arguments Description 

accept 
srcType 

desType 

program type in local host 

program type in destination 

host (e.g., server, client) 

newfd 

sockaddr 

return value 

(the file descriptor, used 

for accessing destination 

address) 

local address pointer 

connect 
srcType 

desType 

program type in local host 

program type in destination 

host (e.g., server, client) 

sockaddr destination address pointer 

send 
srcType 

desType 

program type in local host 

program type in destination 

host (e.g., server, client) 

sockfd 

the file descriptor 

(for accessing destination 

address) 

recv 
srcType 

desType 

program type in local host 

program type in destination 

host (e.g., server, client) 

sockfd 

the file descriptor 

(for accessing destination 

address) 

 

We capture the arguments by analyzing the assembly code; for example. 
0x080489c2:  mov      −0x18(%ebp),%eax 

0x080489c5:  mov      %eax,(%esp) 

0x080489c8:  call     0x8048608 <send@plt> 

… … 

0x08048a01:  mov      −0x18(%ebp),%eax 

0x08048a04:  mov      %eax,(%esp) 

0x08048a07:  call     0x8048548 <recv@plt> 

… … 

From the above assembly code, we know the parameters sockfd of send and recv are from 
[EBP-18h]. So send and recv pass messages to others by the same socket channel, and we 
mark srcType and desType as c and s respectively: send(c,s), recv(c,s). Because the 
distributed nodes are being continually changed by connecting or disconnecting, c and s are 
used to distinguish the different applications, such as a server application or a client 
application. Moreover, we use them during the modeling phase instead of specific parameter 
values such as [EBP-18h] for two reasons: (1) We only need to know the relation between 
parameters during the modeling phase rather than specific values. (2) The specific values can 
only be determined at runtime. Obviously, we cannot expect programmers to provide 
specific values because they are too much. However, the relation of parameters is not 
determined only by analyzing the assembly code. The best way to see the relation is to study 
the program’s behaviors in correct execution. In other words, we can statistically “learn” the 
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relation between parameters through training. 

4.2.2.2 Adding Concurrency Operation 

Concurrency operators are added to process expressions in the following situations: 

1) Situation 1. The operations can create a new multi-process or multi-thread. When the 

multi-processes or multi-threads such as fork and vfork appear in the application, we should 

analyze jump sentences such as JLE and JNE and change their alternative composition 

operators to parallel composition operators (‘+’→’||A’). 

For instance, in pthread_create of process expression S1 in section 4.2.1, the alternative 

composition operators in S8 are replaced with parallel composition operators: 

S8=S0||AS2=accept.S1||A recv.S3. 

2) Situation 2. The operations are used for the synchronization of multi-threads. 

(a) The mutual exclusion operations appear in system calls, such as lock, 

pthread_mutex_lock, unlock, and pthread_mutex_unlock. 

(b) The condition variables operations appear in system calls, such as lock, 

pthread_mutex_lock, wait, signal, unlock, and pthread_mutex_unlock. 

(c) The read or write lock operations appear in system calls, such as rlock and wlock. 

The method of rewriting a process expression is to create a process expression for a), b), 

c)—for instance, . .lock lockS lock unlock S —and let it run concurrently with an access process, 

such as ||A lockP S , as detailed in our previous publication [8]. 

(d) Parent and child process, the main thread or child thread synchronization operation: 

In order to recycle the resources of a zombie process, after calling the child process exit, 

the parent process must call wait, wait3, wait4, waitpid, pthread_join, etc. Thus, we must add 

a synchronization mark: We insert an action 
isig  after wait and insert a co-action 

isig  

after system call exit (i is a positive integer, the identification number). Meanwhile, we add 

the new inserted action into the synchronous action set A. 

3) Situation 3. The operations are used for interaction in distributed monitoring nodes. For 

example, in the queue management system in section 4.1, after obtaining the process 

expressions of each monitoring node, we combine the process expressions into the whole 

process expression by parallel composition operators, i.e., 
0 0 0|| ||QMS A AP G C S . 

4.3 Process Migration Rules 

According to section 3, the sequential composition operator and alternative composition 

operator can migrate as . aa P P , . . aa P b Q P  , . . ba P b Q Q  . This gives us 

migration rule 1: 

Migration rule 1: 
1

. j

n
a

i i j

i

a P P


 ,1≤j≤n, n≥1. 

According to migration rule 1, the following migration can lead to system halt, causing an 

abnormality. 

Path abnormality 1: If 
ia b , then 

1

0.
n

b

i i

i

a P


 ,1≤j≤n，n≥1. 

Based on definition 3, the concurrent relation laws are given as follows. We divide the 

concurrent relations into binary concurrent relations and multiplex concurrent relations. 

1) Binary concurrent relations: The relation of two guarded expressions is connected with 

a parallel composition operator, such as . || .Aa P b Q . According to the relation of the prefix 

action a, b, and synchronous set A, we present six laws for parallel compositions. 
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Law 1 (zero element) 0  is a zero element; i.e., || 0 0AP  . 

Law 2 (identity) √ is an identity; i.e., ||AP P√ . 

According to Laws 1 and 2, we can obtain || 0 0A √  and ||A √ √ √. 

Law 3 If ,a a A , then . || . ( ).( || )A Aa P a Q a P Q . 

Law 4 (synchronous abnormality) If ,a b A  and b a , then . || . 0Aa P b Q  . 

According to laws 3 and 4, we know the actions in synchronous set A cannot be executed 

independently. Thus, they must be executed synchronously with corresponding co-actions. 

Law 5 If a A  and b A , then . || . .( || . )A Aa P b Q a P b Q . 

Law 6 If ,a b A , then . || . .( || . ) .( . || )A A Aa P b Q a P b Q b a P Q  . 

Laws 5 and 6 indicate that actions outside the set A execute asynchronously, and that 

parallel composition operators (||A) can be ultimately transformed into alternative 

composition operators (+). 

2) Multiplex concurrent relations: The relations of guarded expressions are connected with 

multiple composition operators, such as (.), (+), and (||A). 

Law 7 If ,a a A , then ( . . ) || . ( ).( || )A Aa P b Q a R a P R 
   

. 

Law 7 indicates that synchronous operations will be performed preferentially when the 

synchronization condition is met. It is then easy to reach the following conclusion. 

If , , ,a a b b A , then
( . . ) || ( . . )

( ).( || ) ( ).( || )

A

A A

a P b Q a R b S

a P R b Q S 

  



   

. 

If , , ,a b c d A , then

( . . ) || ( . . )

.( || ( . . )) .( || ( . . ))

.(( . . ) || ) .(( . . ) || )

A

A A

A A

a P b Q c R d S

a P c R d S b Q c R d S

c a P b Q R d a P b Q S

  

  

   

. 

Law 8 If ,a a A , then
. || . || .

( ).( || . || ) ( ).( . || || )

A A

A A A A

a P a Q a R

a P a Q R a a P Q R 




. 

Law 8 indicates that if the process .a P  and .a Q  are competitive for .a R , they must be 

concurrent with .a R  separately. 

The other forms of multiplex concurrent relations can be summed up by the above two 

relations. Law 7 and law 8 constitute the minimum complete law set of multiplex concurrent 

relations. 

Next we give the other migration rules. According to law 3, law 7, and law 8, we know if 

,a a A , then 

( ). || . ||a

A Aa P a Q P Q  

( )( . . ) || . ||a

A Aa P b Q a R P R   

( ). || . || . . || ||a

A A A Aa P a Q a R a P Q R . 

Thus we can obtain migration rule 2 by combining this with migration rule 1. 

Migration rule 2: If ,a a A , then 
1

( )
|| ||. . ja

Ai

i

j

n

j Ai a Ra P P R




 , 1≤j≤n，n≥1. 

According to law 5, we know that if a A and b A , then . || . || .a

A Aa P b Q P b Q . 

According to law 6, we know that if ,a b A , then . || . || .a

A Aa P b Q P b Q  and 

. || . . ||b

A Aa P b Q a P Q . 
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According to migration rules 1 and 2, the following migration can lead to system halt, 

causing an abnormality. 

Path abnormality 2: If 
ia c  and 

ib c , then 
1 1

|. 0.|
n m

i i k

c

A k

i k

a P b R
 

  . 

4.4 Running State Set 

We denote the part of the process expressions left of the equal sign as a process label to 

describe the process state. To record the running states of the application, we construct the 

running state set rsSet, consisting of distributed applications state appState, thusly: 

rsSet={appState}, appState={appType,riLink}. Here, appType is the application type 

identifier, and riLink is the pointers that point to running instance ri. 

ri={instanceID,proLabelSet,next}. Here, instanceID is the running instance identifier, and 

each running instance has a unique identifier that corresponds with the IP address and port 

number of the deployment node. proLabelSet is the process state set of the current running 

instance, consisting of process label. An application can have multiple running instance ri, 

and next represents the pointers pointing to the next ri that has the same appType. The 

construction algorithm is as follows. 

(a) Initialize the rsSet so it is empty. 

(b) If the process expression contains (||A), then we add the process label on both sides of 

the (||A) into rsSet. 

The rsSet will be updated continually when detecting a system call syscall during the 

detection phase.The updating algorithm is as follows. 

Input: the awaiting detection system call syscall; running state set rsSet. 

Output: running state set rsSet. 

Algorithm description: 

 Pe  Cp,Mp,P,Q； /* declaration process expression */ 

 appType atype; 

 instanceID iid; 

 processLabel pl; 

 atype=GetappType(syscall);  /*access the application type identifier of syscall */ 

 iid=GetinstanceID(syscall);  /*access the running instance identifier of syscall */ 

 if(pl=FindProcessID(atype,iid,rsSet)) /*if the rsSet have not the current running 

instance，then alert */ 

  alert();    /* abnormality, quit, alert */ 

 Cp=GetPe(pl); /* access the process expression according to pl */ 

if(Cp contain ||A){ 

  P=leftprocessLable(Cp); 

  Q=rightprocessLable(Cp); 

  rsSet.insert(P); 

  rsSet.insert(Q); 

} 

else{ 

 Mp=migration(Cp);  /* process migration function */ 

 rsSet.delete(Cp); 

 rsSet.insert(Mp)； 

} 

Return rsSet; 
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The migration method in the algorithm is given in Section 5.2, shown in Fig. 4. 

5. Anomalous Behavior Detection and Analysis 

In this section, we report the results of behavior detection. The performance of the proposed 

method is evaluated experimentally. 

5.1 Extraction of System Call Sequences 

There are two situations for extracting system call sequences. 

1) When detecting the behaviors of a monitoring node, such as the get-ticket client, the 

system call sequences at runtime are marked as awaiting detection actions. 

2) When detecting the interaction behaviors of multiple monitoring nodes, if the 

monitoring nodes have a global clock, then the system call sequences of monitoring nodes 

will combine into one sequence according to the global clock. If these monitoring nodes do 

not have a global clock, then the events of distributed applications that happen later may be 

marked with an earlier time tag. We use the time stamp ordering method proposed by 

Lamport [2] to combine the events into one sequence by logical time sequence. 

5.2 Detecting Anomalous Behavior 

5.2.1 Behavior Detection Algorithm 

The primary steps of the detection algorithm are shown in Fig. 4. 
 

Initialize

rsSet

?a A

?b A

Migration rule 2

yes

yes

yes

Trigger synchronous 

abnormality and alert

no

Read a waiting for 

detecting systemcall

Read the next waiting for

detecting systemcall b

?b a

yes

no

Trigger path 

abnormality 2 and 

alert

no

no
Is the systemcall 

matched with prefix action of 

the process expression?

Trigger path abnormality 

1 and alert

no

Migration rule 1

yes

query rsSet and determine the 
process expression associated 

with the systemcall a

Is the systemcall 

matched with prefix action of 

the process expression?

Update rsSet

Is the systemcall b 

matched with prefix action of 

the process expression?

yes

no

 
Fig. 4. The behavior detection flow chart 
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Its main idea is described as follows. 

Input: the action sequences extracted according to the methods in Section 5.1; 

Output: some alarm information, such as detection log, abnormal system call, and the 

current rsSet. 

1) Initialize rsSet and read the action sequences in turn for detecting. 

2) Query the running state set rsSet on the basis of system call information and obtain the 

running state of distributed applications. Then query the normal behavior database (files 

*.pe), finding the process expressions associated with the system call. 

3) Match the system call with the prefix action of process expressions. If match is 

successful, then proceed to 4). Otherwise, alert and save the information. 

4) Migrate the running state according to the migration rules (files *.pm) and update the 

migrated state into the running state set rsSet. 

5) Read out the next system call and go to 2). 

5.2.2 Behavior Detection Analysis 

We analyze the queue management system of a bank in Fig. 2 and capture the system call 

sequences for get-ticket client, call-ticket clients, and server at runtime, as shown in Fig. 5. 

We capture system calls and their parameters according to Table 1. Then, we analyze the IP 

address and port information of the local and destination hosts and make them correspond 

with the running instance identifier, replacing the original parameters of system calls with the 

running instance identifier, as shown in Fig. 5. We bind a system call to its appType and 

instanceID, for example, {accept(2,1),S,1}. That means the appType of the system call accept 

is S. Similarly, the instanceID of the system call accept is 1. The instanceID of the running 

instance identifier that interacts with the system call accept is 2. 

 
Get-ticket client:          (IP:202.206.251.61,

 port:7839, appType:G, instanceID:2)

{ connect(1) , G , 2 } , { send( 1 ) , G , 2 } , 

{recv(1),G,2}, {send(1),G,2}, {recv(1),G,2}…

Call-ticket client:          (IP:202.206.251.62,

 port:7840, appType:C, instanceID:3)

{ c onnect( 1 ) , C , 3 } , { send( 1 ) , C , 3 } , 

{recv(1),C,3}, {send(1),C,3}, {recv(1),C,3}…

Server:   (IP:202.206.251.60, port:7838, appType:S, instanceID:1)

{accept(2,1),S,1}, {pthread_create,S,1}, {recv(2),S,1},{accept(3,1),S,1}, {pthread_create,S,1}, 

{send(2),S,1}, {recv(3),S,1},{lock(mut),S,1}, {send(3),S,1} , {unlock(mut),S,1}…

 
Fig. 5. System call sequences at runtime 

 

We use the method in Section 5.1 to obtain the system call sequences as follows. 
{connect(1),G,2},{accept(2,1),S,1},{pthread_create,S,1},{send(1),G,2},{recv(2),S,1}, {connect(1), 

C,3}, {accept(3,1),S,1},{pthread_create,S,1},{send(2),S,1},{recv(1),G,2},{send(1),C,3},{recv(3),S, 

1},{lock(mut),S,1}, {send(3),S,1}, {recv(1),C,3}, {unlock(mut),S,1} … 

The above system call sequences are read in turn, matching with the process expressions 

( 0 0 0|| ||QMS A AP G C S ) of the queue management system. Meanwhile, process migrates 

according to migration rules. The behavior detection procedures are described in Fig. 6. We 

use the method in Section 4.2.2.1 to obtain the parameters’ relation of process expressions in 

Fig. 6. The numbered arrows in the figure stand for detection steps. The detection steps are 

given for the first 10 times. For example, for the first detection read out {connect(1),G,2}, the 

type identifier of its application is G (get-ticket client), and the current running instance 

identifier is 2. The initial state is rsSet={{G，{2，{G0}} },{C,{3,{ C0}} }, {S,{1,{ S0}} } }, and 

thus the process expression G0 is associated with the system call connect(1). According to 
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Fig. 4, we know the awaiting detection action connect(1) belongs to the synchronous actions 

set A . Therefore, the next system call accept(2,1) needs be read out, so the process migrates 

according to migration rule 2; i.e., G0 migrates to G1 and S0 migrates to S1, updating rsSet. 

Then go to step 2. The red number in the box is the running instance identifier. 

Get-ticket client:

G0=connect(g,s).G1

G1=send(g,s).G2+close.G3

G2=recv(g,s).G1

G3=exit.G4

G4=√

Call-ticket client:

C0=connect(c,s).C1

C1=send(c,s).C2+close.C3

C2=recv(c,s).C1

C3=exit.C4

C4=√

Server:

S0=accept(s,g|c).S1

S1=pthread_create.S8 +close.S7

S2=recv(s,g|c).S3

S3=send(s,g).S2+lock(m).S4 +close.S5

S4=send(s,c).S6

S5=pthread_exit.S7

S6=unlock(m).S2

S7=√
S8= S0||AS2=accept(s,g|c).S1||A recv(s,g|c).S3

①

① ②
③

③

④

④

⑤

⑥

⑥

⑦

⑧⑨

⑩

2

1

3

⑦
⑨

 
Fig. 6. Behavior detection procedures 

 

Initial state: rsSet={{G，{2，{G0}} },{C,{3,{ C0}} }, {S,{1,{ S0}} } }; 

Step①: systemcall: {connect(1),G,2},{accept(2,1),S,1}; 

rsSet={{G，{2，{G1}} },{C,{3,{ C0}} }, {S,{1,{ S1}} } }; 

Step②: systemcall: {pthread_create,S,1}; 

rsSet={{G，{2，{G1}} },{C,{3,{ C0}} }, {S,{1,{ S0 , S2}} } }; 

Step③: systemcall: {send(1),G,2},{recv(2),S,1}; 

rsSet={{G，{2，{G2}} },{C,{3,{ C0}} }, {S,{1,{ S0 , S3}} } }; 

Step④: systemcall: {connect(1), C,3}, {accept(3,1),S,1}; 

rsSet={{G，{2，{G2}} },{C,{3,{ C1}} }, {S,{1,{ S1 , S3}} } }; 

Step⑤: systemcall: {pthread_create,S,1}; 

rsSet={{G，{2，{G2}} },{C,{3,{ C1}} }, {S,{1,{ S0 , S2 , S3}} } }; 

Step⑥: systemcall: {send(2),S,1},{recv(1),G,2}; 

rsSet={{G，{2，{G1}} },{C,{3,{ C1}} }, {S,{1,{ S0 , S2 }} } }; 

Step⑦: systemcall:,{send(1),C,3},{recv(3),S, 1}; 

rsSet={{G，{2，{G1}} },{C,{3,{ C2}} }, {S,{1,{ S0 , S3 }} } }; 

Step⑧: systemcall: {lock(mut),S,1}; 

rsSet={{G，{2，{G1}} },{C,{3,{ C2}} }, {S,{1,{ S0 , S4 }} } }; 

Step⑨: systemcall: {send(3),S,1} , {recv(1),C,3}; 

rsSet={{G，{2，{G1}} },{C,{3,{ C1}} }, {S,{1,{ S0 , S6 }} } }; 

Step⑩: systemcall: {unlock(mut),S,1}; 

rsSet={{G，{2，{G1}} },{C,{3,{ C1}} }, {S,{1,{ S0 , S2 }} } }; 

 

The matching procedure of system calls is described as follows. 

1) Query rsSet and determine the process expression associated with the systemcall. 

Does the systemcall name match the prefix action name of the process expression？
If the match is successful, then turn to (2). 
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2) Match the parameters of system calls with the parameters of process expressions. For 

instance, for {connect(1),G,2}, its appType is G, the instanceID of running instance identifier 

that interacts with it is 1, and its appType is S. Therefore, it successfully matches with 

connect(g,s). Note: While application types, such as G and S, are not case sensitive, we 

define the parameters of system calls with capital letters and define the action parameters of 

process expressions with lower-case letters. 

If the system call sequences all match correctly, then the behavior is normal. If the 

matching procedure causes one of the abnormalities in Section 4.4, then an alert is generated. 

Moreover, according to the abnormal system call and the current rsSet, we can determine the 

associated process expression of the abnormal system call and the interactive processes, and 

then we can determine the location and scope of abnormal anomalous behavior nodes. 

If a new node is connected during the detection phase, then we add its state into the 

running state set rsSet. For instance, when a call-ticket node number 4 connects with the 

server, rsSet={{G，{2，{G1}} },{C,{(3,{ C2}),(4,{C1})} }, {S,{1,{ S0, S4 }} } }. If a node is 

disconnected, then its state will be deleted from the running state set rsSet. In this way, the 

dynamic change of nodes will be dealt with well. 

5.2.3 Detecting Intrusion 

The sample code for the main function in the server is given in Section 5.2.2, whose function 

is used to invoke call-ticket or get-ticket. If the first character is a carriage return, then the 

call-ticket handling function is summoned. If the first character is A, then the get-ticket 

handling function is invoked. However, if the data packets from the get-ticket client were 

intercepted by anomalous behavior—such as if their character A is sullied by a carriage 

return character—the server remains rigid in determining their behavior according to the 

character. Although such an intrusion can happen, our model is effective in detecting it. 

Under these circumstances, our model can capture the system call sequences as follows. 

…{send(1),G,2},{recv(2),S,1},{connect(1),C,3},{accept(3,1),S,1},{pthread_create,S,1},{loc

k(mut),S,1},{send(2),S,1},{recv(1),G,2},{unlock(mut),S,1} … 

When {lock(mut),S,1} is detected during the detection phase, it is easy to know the 

running state of the server is S3 from Fig. 6. It can successfully match with the prefix action 

lock(m). Thus, the process migrates to S4 and then matches with the next system call 

{send(2),S,1} and prefix action send(s,c). Here the running instance identifier that interacts 

with system call send is 2, and the corresponding appType is G rather than C. From Fig. 6 we 

can see how noticeable intrusions are, and how easy anomalies are to detect. 

5.3 Anomalous Behaviors Detection Analysis 

A brief discussion on the relationship of several common attack types and exception types is 

as follows. 

1) Code injection attacks. 

Code injection attacks are the attackers from local or remote to insert dangerous 

executable shell code into an address space of the process, and then by some means to 

modify control flow of the process, make the process execute this shell code, eventually 

achieving the purpose of attacking behavior. Such as the buffer overflow attacks, the format 

string misuse and double-free. These kinds of attacks will trigger the path abnormality 1 and 

the path abnormality 2. 

2) Impossible path attacks. 

Impossible paths exist when multiple different call sites to the same target procedure exist. 

In order to achieve this kind of attack, the attackers need to construct the call stack to save 

function return address, and they may implement by injecting code. Once the impossible 
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paths occurred, they will trigger path abnormality 1.Moreover, they may be trigger the other 

abnormities supposing that the attackers achieve their purposes indirectly by injecting code.   

3) Mimicry attacks. 

Mimicry attacks are that the attackers modify the parameters of system call using the 

rightful system call sequences to achieve the attack purpose. Our model only analyses the 

interactive action parameters of system call sequences, thus it can not detect the mimicry 

attacks. We will research on a wider range of data flow analysis to overcome this 

shortcoming in the future. 

4) Denial of Service attacks / Distributed Denial of Service attacks. 

According to the action mechanism, denial of service attacks / distributed denial of service 

attacks can be divided into resource depletion denial of service attacks and denial of service 

attacks based on the abnormality. The former refer to the attackers exhaust system resources 

by a large number of inputs, for example, setting up a large number of network connections, 

forcing process processing large files, etc. These kinds of attacks typically applied to 

distributed denial of service attacks, and they can not trigger the abnormality, thus our model 

can not detect these kinds of attacks. However, the latter depend on the specific defect of the 

process, for instance, infinite loops owing to the integer overflow. These kinds of attacks 

need to change the control flow of process to achieve the attack purpose, and they can trigger 

the path abnormality 1 and the path abnormality 2, thus they can be detected by our model. 

5) The man-in-the-middle attacks. 

The man-in-the-middle attack (MITM) requires an attacker to have the ability to both 

monitor and alter or inject messages into a communication channel. The attacker can 

intercept all relevant messages passing between the two victims and inject new ones. These 

kinds of attacks can cause the actions of the relevant nodes do not synchronize, and trigger 

the synchronous abnormality (Law 4).  

6) Man-at-the-end attacks. 

Man-at-the-end (MATE) attacks occur in settings where an adversary has physical access 

to a device and compromises it by tampering with its hardware or software. Remote man-at- 

the-end (R-MATE) attacks occur in distributed systems where un-trusted clients are in frequ- 

ent communication with trusted servers over a network, and malicious users can get an adva- 

ntage by compromising an un-trusted device. These kinds of attacks also need to change the 

control flow of process to achieve the attack purpose, and they can trigger the path abnorm- 

ality 1 and the path abnormality 2, thus they can be detected by our model. 

5.4 Comparative Study of Previous Approaches 

The existing security paradigms proposed for distributed applications are aimed at some spe- 

cific attacks, such as DOS/DDOS attacks and Remote Man-at-the-end (R-MATE) attacks. A 

comparative study on previously schemes is presented in Table 2. 

 
Table 2. Comparative study of previous approaches 

 

Ref 
Detection 

Technique 

Detection 

Time 
Architecture Coverage Pros Cons 

This 

Work 

Anomaly 

Based 

 

Online Host 

Network 

Distributed 

Computers, 

Networks, 

Cloud 

computing, 

Distributed 

application. 

Distributed 

operations,  

Multi-threaded 

processing, 

Real time 

detection. 

Could not detect 

the mimicry 

attack and attacks 

based on 

data-flow. 
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[4] Anomaly 

Based 

Online Host 

Network 

Distributed  

Cloud 

computing 

Multi-threaded 

cloud  IDS. 

Works only for 

Cloud computing 

[5] Anomaly 

Based 

Online Distributed Distributed 

application 

Distributed 

operations,  

Against 

Remote 

Man-at-the-end 

(R-MATE) 

attacks. 

Could not detect : 

The programs in 

which the client 

does not need to 

frequently 

communicate 

with the server; 

The applications 

which need to 

completely 

prevent any 

tampering of 

client code. 

[6] Misuse 

& 

Anomaly 

Based 

 

 

Online 

& Offline 

 

Host 

Network 

Distributed 

 

Computers, 

Networks, 

Cloud 

computing, 

Distributed 

application. 

Hybrid 

detection, 

Distributed and 

non-distributed 

operations,  

Multi-threaded 

processing, 

Real time 

detection. 

High 

computation cost 

 

We also compare the precision of the above schemes and the result is presented in Table 3. 
 

Table 3. Comparison of detection precision for schemes 

Attacks Our scheme Ref[4] scheme Ref[5] scheme Ref[6] scheme 

Code injection attacks Yes No No Yes 

Impossible path attacks Yes No No No 

Mimicry attacks No No No No 

DOS/DDOS Yes/No Yes No Yes 

The man-in-the-middle attacks Yes No No Yes 

Remote Man-at-the-end 

(R-MATE) attacks 

Yes No Yes No 

 

As can be seen from Table 3, the precision of our scheme is better than the other schemes. 

But our scheme is better suited for an application to distributed applications that pay close 

attention to perform orders and logical, such as mission critical system. 

5.5 Performance Evaluation 

5.5.1 Theory Analysis 

We adopt two algorithm methods to search the adjacency list: depth-first and breadth-first. 

No matter which algorithm is used, the time complexity of the adjacency list is the same: 

O(n+e), where n denotes the number of vertices and e denotes the number of adjacency 

edges. Obviously, the space complexity of the adjacency list is also O(n+e). If we store a set 

of m concurrent processes, the space and time complexity is O(m). Thus, the total space and 

time complexity is O(n+e+m); that is to say, the proposed method has linear space–time 

complexity. Moreover, the running costs do not increase significantly with the increasing of 

application scale. 
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5.5.2 Experimental Analysis 

We use Hadoop for the test objects and deploy a Hadoop computer cluster. Next we 

investigate a benchmark test case for WordCount, Sort and Pi, using 3, 6, 9, and 12 Slave 

nodes, as well as the Master node. We record the cost of time and space that the process of 

modeling and detection incurs. Our runtime environment is as follows: one server running 

Linux OS (rhel-server-5.4) on an Intel 2 GHZ six-core CPU with 8GB of RAM, as the 

Master node, and twelve hosts running Linux OS (rhel-server-5.4) on Intel 1.73 GHZ dual 

core CPUs with 2 GB of RAM, as the Slave nodes. We use the properties of three benchmark 

test cases listed in Table 4. 
 

Table 4. The properties of benchmark test case 
 

Program Functional description Workload 

WordCount 
A map/reduce program that counts the 

words in the input files 
Counting 10,000,000 words 

Sort 
A map/reduce program that sorts data 

written by the random writer 

Randomly generating and 

sorting 100MB per node 

Pi 
A map/reduce program that estimates pi 

using the Monte Carlo method 
Calculating pi 

 

We obtain the time and space overhead in the modeling phase, as shown in Fig. 7. 

Similarly, the time and space overhead in the detection phase are shown in Fig. 8 and Fig. 9 

respectively. Program execution times are to record in seconds. The base execution time has 

no modeling and detection operation. Percentages compare against base execution. 
As can be seen from experimental results, the time and space overheads of our model 

increase linearly in the detection phase, which basically was anticipated. The time and space 

overhead of the model are high in the modeling phase because of performing a large number 

of calculations. However, the time and space overhead of our detection model are 

satisfactory in the detection phase. 
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Fig. 8. The time overhead in the detection phase 

Fig. 7. The time and space overhead in the modeling phase 
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6. Conclusions 

In this paper, the problem of providing safe, efficient parallel implementations of distributed 

applications is investigated. We presented a method for anomalous behavior detection using 

system call sequences. Normal behaviors were defined in terms of system call sequences 

executed by running privileged processes. We use process algebra to describe behaviors of 

distributed applications and detect behaviors based on process expressions. Our profiles of 

normal behaviors, which were generated using process expressions rewritten by eliminating 

nondeterminism and adding concurrency operators, were precise and complete. The 

architecture of our model was specified, using a bank queue management system as an 

example to describe the procedure of the detection algorithm. Behavior detection and 

analysis results show that our method is a good discriminator between normal and 

anomalous behavior characteristics of distributed applications. Performance evaluation 

shows that the proposed method enhances efficiency without security degradation. 
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