DOI QR코드

DOI QR Code

Performance Study of Membrane Capacitive Deionization Process Applied by Perfluoropolymer and Aminated Poly(ether imide) Ion Exchange Membranes

불소화고분자와 아민화된 폴리이서이미드 이온교환막을 적용한 축전식 탈염공정의 성능 연구

  • Kim, Ji Seon (Department of Chemical Engineering, Hannam University) ;
  • Jeong, Joo Hwan (Department of Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Chemical Engineering, Hannam University)
  • 김지선 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 정주환 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화학공학과)
  • Received : 2015.02.10
  • Accepted : 2015.02.17
  • Published : 2015.02.28

Abstract

To investigate the performance of the composite carbon electrodes which the ion exchange polymers were directly casted onto porous carbon electrode surfaces, the adsorption/desorption experiments were carried out by varying the feed concentration, feed flow rate, and desorption voltages for the NaCl solution. When the feed concentration was 100 mg/L, the increase of the adsorption time led to the increase of the salt removal due to the increase of the residence time inside the cell while the increase of the feed flow rate from 15 mL/min to 23 mL/min gave the decrease of the salt removal efficiency, 12% because of the short residence time. When the feed concentration was 200 mg/L, the salt removal was shown 10~15% low because of the incomplete desorption within the desorption intervals.

다공성 전극표면에 이온교환고분자를 직접 casting하여 만들어진 복합탄소전극의 성능을 알아보기 위해서 NaCl 수용액을 이용하여 흡착시간, 공급액 농도, 유속, 탈착전압에 따라 흡/탈착실험을 진행하였다. 유입수가 100 mg/L일 때 동일 조건에서 흡착시간이 3분에서 5분으로 증가하면서 제거율이 3% 증가하였는데 이는 유입수의 셀 내부 잔류시간의 증가로 인한 것으로 사료되며 또한 유속이 15 mL/min에서 23 mL/min 증가하면서 효율이 12% 정도 낮음을 보인 것은 유속이 상승하면서 유입수의 셀 내부 잔류시간이 짧아지면서 나타나는 영향으로 사료된다. 유입수의 농도를 200 mg/L로 증가하였을 때 효율은 100 mg/L보다 10~15% 정도 낮은 값을 보였는데, 이는 탈착구간에서 완전탈착이 되지 않아 나타나는 것으로 판단된다.

Keywords

References

  1. M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution", J Colloid and Interface Sci., 264(2), 414 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  2. T. J. Welgemoed and C. F. Schutte, "Capacitive deionization technology: an alternative desalination solution", Desalination, 183, 1 (2005). https://doi.org/10.1016/j.desal.2005.04.021
  3. Y. J. Kim and J. H. Choi, "Desalination of brackish water by capacitive deionization system combined with ion-exchange membrane", Appl. Chem. Eng., 21, 87 (2010).
  4. H. H. Jung and S. W. Hwang "Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying", Desalination, 216, 377 (2007). https://doi.org/10.1016/j.desal.2006.11.023
  5. C. M. Yang, W. H. Choi, B. W. Cho, W. I. Cho, K. S. Yun, and H. S. Han, "Desalination effect of capacitive deionization process with porous carbon- nano materials", J. Korean Ind. Eng. Chem., 15, 294 (2004).
  6. M. W. Ryoo and G, Seo, "Improvement in capacitive deionization function of actived carbon by titania modification", Water Res., 37, 1527 (2003) https://doi.org/10.1016/S0043-1354(02)00531-6
  7. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, "Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes", Water Res., 42(20), 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  8. K. K. Park, J. B. Lee, P. Y. Park, S. W. Yoon, J. S. Moon, H. M. Eun, and C. W. Lee, "Development of a carbon sheet electrode for electrosortion desalination", Desalination, 206 (2007).
  9. Marc A. Anderson, Ana L, Cudero, and Jesus Palma, "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?", Electrochmica Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  10. J. Y. Choi and J. H. Choi, "A carbon electrode fabricated wsing poly(vinylidene fluoride) binder controlled the faradaic reaction of carbon powder", J. Ind. Eng. Chem., 16, 401 (2010). https://doi.org/10.1016/j.jiec.2009.08.005
  11. P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  12. J. H. Yeo and J. H. Choi, "Enhancement of selective removal od nitrate ions from a mixture of anion wsing a carbin electrode coated with ion-exchange resin powder", Appl. Chem. Eng., 24, 49 (2013).
  13. D. J. Kim and S. Y. Nam, "Development and application trend of bipolar membrane for electrodialysis", Membr. J., 23(5), 319 (2013).
  14. C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent Development Trends of Cation Exchange Membrane Materials", Membr. J., 12(1) (2002).
  15. S. W. Chen, J. H. Jun, J. W. Rhim, and S. Y. Nam, "Studies on the Preparation of the Poly (vinyl alcohol) ion Exchange Membranes for Direct Methanol Fuel cell", Membr. J., 13(3), 199 (2003).
  16. G. J. Hwang, J. K. Kim, S. H. Lee, and H. S. Choi, "Electro-electrodialysis Using the Radiationtreated Cation Exchange Membrane by Accelerated Electron Radiation to Concentrate HI from HIx Solution", Membr. J., 17(4), 338 (2007).
  17. M. S. Kang, Y. J. Choi, and S. H. Moon, "Effects of Immobilized Bipolar Interface Formed by Multivalent and Large Molecular Ions on Electrodialytic Water Splitting at Cation-Exchange Membrane Surface", Membr. J., 13(3), 143 (2003).
  18. Y. J. Kim and J. H. Choi, "Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane", Sep. Purif., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  19. J. S. Kim and J. H. Choi, "Fabricated and characterization of a carbon electrode coated with cation- exchange polymer for the membrane capacitive deionization applications.", J. Membr. Sci., 355, 85 (2010). https://doi.org/10.1016/j.memsci.2010.03.010
  20. D. J. Lee, M. S. Kang, S. H. Lee, and J. S. Park, "Application of Capacitive Deionization for Desalination of Mining Water", J. Korean Electrochem Soc., 17(1), 37 (2014). https://doi.org/10.5229/JKES.2014.17.1.37
  21. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, and Y. M. Lee, "Cross-linked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes", J. Membr. Sci., 238, 143 (2004). https://doi.org/10.1016/j.memsci.2004.03.030
  22. P. M. Biesheuvel, B. van Limpt, and A. van der Wal, "Dynamic adsorption/desorption process model for capacitive deionization", J. Phys. Chem. C., 113, 5636 (2009). https://doi.org/10.1021/jp809644s