DOI QR코드

DOI QR Code

Mineral-Based Slow Release Fertilizers: A Review

  • Noh, Young Dong (Department of Ecosystem Science and Management and Materials Research Institute, The Pennsylvania State University) ;
  • Komarneni, Sridhar (Department of Ecosystem Science and Management and Materials Research Institute, The Pennsylvania State University) ;
  • Park, Man (Soil Sciences Laboratory, College of Agriculture and Life Science, Kyungpook National University)
  • Received : 2014.08.12
  • Accepted : 2015.02.23
  • Published : 2015.02.28

Abstract

Global population is expected to reach nine billion in 2050 and the total demand for food is expected to increase approximately by 60 percent by 2050 as compared to 2005. Therefore, it is important to increase crop production in order to meet the global demand for food. Slow release fertilizers have been developed and designed in order to improve the efficiency of fertilizers. Mineral-based slow release fertilizers are useful because the minerals have a crystalline structure and are environmentally friendly in a soil. This review focuses on slow release fertilizers based on montmorillonite, zeolite, and layered double hydroxide phases as a host for nutrients, especially N. Urea was successfully stabilized in the interlayer space of montmorillonite by the formation of urea-Mg or Ca complex, $[(Urea)_6Mg\;or\;Ca]^{2+}$ protecting its rapid degradation in soils. Naturally occurring zeolites occluded with ammonium nitrate and potassium nitrate by molten salt treatment could be used as slow release fertilizer because the occlusion process increased the capacity of zeolites to store nutrients in addition to exchangeable cations. Additionally, surface-modified zeolites could also be used as slow release fertilizer because the modified surface showed high affinity for anionic nutrients such as nitrate and phosphate. Moreover, there were attempts to develop and use synthetic layered double hydroxide as a carrier of nitrate because it has positively charged layers which electrostatically bond nitrate anions. Kaolin was also tested by combining with a polymer or through the mechanical-chemical process for slow release of nutrients.

Keywords

References

  1. Adetunji, M.T. 1994. Nitrogen application and underground water contamination in some agricultural soils of South Western Nigeria. Fertil. Res. 37:159-163. https://doi.org/10.1007/BF00748556
  2. Alexandratos, N., and J. Bruinsma. 2012. World agriculture towards 2030/2050, the 2012 revision. ESA Working Paper No. 12-03, Rome: Food and Agriculture Organization of the United Nations (FAO). pp. 23-51.
  3. Allen, E.R., L. Hossner, D. Ming, and D. Henninger. 1996. Release rates of phosphorus, ammonium, and potassium in clinoptilolite-phosphate rock systems. Soil Sci. Soc. Am. J. 60:1467-1472. https://doi.org/10.2136/sssaj1996.03615995006000050026x
  4. Allen, E.R., L.R. Hossner, D.W. Ming, and D.L. Henninger. 1993. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures. Soil Sci. Soc. Am. J. 57:1368-1374. https://doi.org/10.2136/sssaj1993.03615995005700050034x
  5. Bansiwal, A.K., S.S. Rayalu, N.K. Labhasetwar, A.A. Juwarkar, and S. Devotta. 2006. Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J. Agric. Food Chem. 54:4773-4779. https://doi.org/10.1021/jf060034b
  6. Bortolin, A., F.A. Aouada, L.H.C. Mattoso, and C. Ribeiro. 2013. Nanocomposite PAAm/Methyl Cellulose/Montmorillonite Hydrogel: Evidence of Synergistic Effects for the Slow Release of Fertilizers. J. Agric. Food Chem. 61:7431-7439. https://doi.org/10.1021/jf401273n
  7. Charette, M.A., P.B. Henderson, C.F. Breier, and Q. Liu. 2013. Submarine groundwater discharge in a river-dominated Florida estuary. Mar. Chem. 156:3-17. https://doi.org/10.1016/j.marchem.2013.04.001
  8. De Roy, A., C. Forano, and P. Besse. 2001. Layered double hydroxides: synthesis and postsynthesis modification. p. 1-39. In: Rives, V. (ed.), Layered Double Hydroxides: Present and Future. Nova Science Publisher Inc., New York.
  9. Eturki, S., F. Ayari, N. Jedidi, and H. Ben Dhia. 2012. Use of clay mineral to reduce ammonium from wastewater. Effect of various parameters. Surf. Eng. Appl. Electrochem. 48:276-283. https://doi.org/10.3103/S1068375512030064
  10. Gillman, G.P., and A.D. Noble. 2005. Environmentally manageable fertilizers: a new approach. Environ. Qual. Manag. 15:59-70. https://doi.org/10.1002/tqem.20081
  11. Govind, C.S. 1979. Controlled-release Fertilizers and horticultural Applications, Sci. Hortic. 11:107-129. https://doi.org/10.1016/0304-4238(79)90037-2
  12. Gruener, J.E., D.W. Ming, K.E. Henderson, and C. Galindo. 2003. Common ion effects in zeoponic substrates: Wheat plant growth experiment. Micro. Meso. Mater. 61:223-230. https://doi.org/10.1016/S1387-1811(03)00371-8
  13. Guo, M.Y., M.Z. Liu, R. Liang, and A.Z. Niu. 2006. Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation. J. Appl. Polym. Sci. 99:3230-3235. https://doi.org/10.1002/app.22892
  14. Halajnia, A. S. Oustan, N. Najafi, A.R. Khataee, and A. Lakzian. 2013. Adsorption-desorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide. Appl. Clay Sci. 80-81:305-312. https://doi.org/10.1016/j.clay.2013.05.002
  15. Ippolito, J.A., D.D. Tarkalson, and G.A. Lehrsch. Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Sci. 176:136-142.
  16. Khan, A., and D. O'Hare. 2002. Intercalation chemistry of layered double hydroxide: recent developments and applications. J. Mater. Chem. 12:3191-3198. https://doi.org/10.1039/b204076j
  17. Kim, K.S., M. Park, W.T. Lim, and S. Komarneni. 2011. Massive Intercalation of Urea in Montmorillonite. Soil Sci. Soc. Am. J. 75:2361-2366. https://doi.org/10.2136/sssaj2010.0453
  18. Kim, K.S., M. Park, C.L. Choi, D.H. Lee, Y.J. Seo, C.Y. Kim, J.S. Kim, S.I. Yun, H.M. Ro, and S. Komarneni. 2011. Suppression of $NH_3$ and $N_2O$ emissions by massive urea intercalation in montmorillonite. J. Soils Sediments 11:416-422. https://doi.org/10.1007/s11368-010-0326-z
  19. Komarneni, S., Q.H. Li, and R. Roy. 1996. Microwave-hydrothermal processing of layered anion exchangers. J. Mater. Res. 11:1866-1869. https://doi.org/10.1557/JMR.1996.0236
  20. Komarneni, S., B.L. Newalkar, D. Li, and T. Gheyi. 2003. Anionic clays as potential slow release fertilizers: nitrate ion exchange. J.Porous Mater. 10:243-248. https://doi.org/10.1023/B:JOPO.0000011385.19108.49
  21. Lee, W.F., and Y.C. Chen. 2005. Effect of intercalated reactive mica on water absorbency for poly (sodium acrylate) composite superabsorbents. Eur. Polym. J. 41:1605-1612. https://doi.org/10.1016/j.eurpolymj.2005.02.011
  22. Liang, R., M.Z. Liu, and L. Wu. 2007. Controlled release NPK compound fertilizer with the function of water retention. React. Funct. Polym. 67:769-779. https://doi.org/10.1016/j.reactfunctpolym.2006.12.007
  23. Li, Z. 2003. Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Micro. Meso. Mater. 61:181-188. https://doi.org/10.1016/S1387-1811(03)00366-4
  24. Mcgilloway, R., R. Weaver, D. Ming, and J.E. Gruener. 2003. Nitrification in a zeoponic substrate. Plant Soil 256:371-378. https://doi.org/10.1023/A:1026174026995
  25. Mortland, M.M. 1966. Urea complexes with montmorillonite: An infrared absorption study. Clay Miner. 6:143-156. https://doi.org/10.1180/claymin.1966.006.3.02
  26. Mortvedt, J.J. 1987. Cadmium levels in soils and plants from some long-term soil fertility experiments in the United States. J. Environ. Qual. 16:137-142.
  27. Mumpton, F.A. 1999. La roca magica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. U.S.A. 96:3463-3470. https://doi.org/10.1073/pnas.96.7.3463
  28. Ni, B., M. Liu, S. Lu, L. Xie, and Y. Wang. 2010. Multifunctional slow-release organic-inorganic compound fertilizer. J. Agric. Food Chem. 58:12373-12378. https://doi.org/10.1021/jf1029306
  29. Park, M., C.Y. Kim, D.H. Lee, C.L. Choi, J. Choi, S.R. Lee, and J.H. Choi. 2004. Intercalation of magnesium-urea complex into swelling clay. J. Phys. Chem. Solids 65:409-412. https://doi.org/10.1016/j.jpcs.2003.09.011
  30. Park, M., and S. Komarneni. 1997. Occlusion of KNO3 and $NH_4NO_3$ in natural zeolits. Zeolites 18:171-175. https://doi.org/10.1016/S0144-2449(96)00130-3
  31. Park, M., and S. Komarneni. 1998. Ammonium nitrate occlusion vs. nitrate ion exchange in natural zeolites. Soil Sci. Soc. Am. J. 62:1455-1459. https://doi.org/10.2136/sssaj1998.03615995006200050044x
  32. Pereira, E.I., F.B. Minussi, C.C.T. da Cruz, A.C.C. Bernardi, and C. Ribeiro. 2012. Urea Montmorillonite-Extruded Nanocomposites: A Novel Slow-Release Material. J. Agric. Food Chem. 60:5267-5272. https://doi.org/10.1021/jf3001229
  33. Perrin, T.S., J.L. Boettinger, D.T. Drost, and J.M. Norton. 1998. Decreasing nitrogen leaching from sandy soil with ammoniumloaded clinoptilolite. J. Environ. Qual. 27:656-663.
  34. Pickering, H.W., N.W. Menzies, and M.H. Hunter. 2002. Zeolite/rock phosphate: a novel slow release phosphorus fertiliser for potted plant production. Sci. Hortic. 94:333-343. https://doi.org/10.1016/S0304-4238(02)00006-7
  35. Powlson, D.S., T.M. Addisott, N. Benjamin, K.G. Cassman, T.M. de Kok, H. van Grinsven, J.L. Lhirondel, A.A. Avery, and C. van Kessel. 2008. When does nitrate become a risk for humans? J. Environ. Qual. 37:291-295. https://doi.org/10.2134/jeq2007.0177
  36. Prasad, M.S., K.J. Reid, and H.H. Murray. 1991. Kaolin: processing, properties and applications Appl. Clay Sci. 6:87-119. https://doi.org/10.1016/0169-1317(91)90001-P
  37. Ramesh, K., and D.D. Reddy. 2011. Zeolites and their potential uses in agriculture. Adv. Agron. 113:219-241. https://doi.org/10.1016/B978-0-12-386473-4.00004-X
  38. Rehakova, M, S. Cuvanova, M. Dzivak, J. Rimarand, and Z. Gavalova. 2004. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr. Opin. Solid State Mater. Sci. 8:397-404. https://doi.org/10.1016/j.cossms.2005.04.004
  39. Sharpley, A.N., and R.G. Menzel. 1987. The impact of soil and fertilizer phosphorus on the environment. Adv. Agron. 41:297-320. https://doi.org/10.1016/S0065-2113(08)60807-X
  40. Shaviv, A., and R. Mikkelsen. 1993. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation - a review. Nutr. Cycl. Agroecosyst. 35:1-12.
  41. Solihin, Q.W. Zhang, W. Tongamp, and F. Saito. 2011. Mechanochemical synthesis of kaolin-$KH_2PO_4$ and kaolin-$NH_4H_2PO_4$ complexes for application as slow release fertilizer. Powder Technol. 212:354-358. https://doi.org/10.1016/j.powtec.2011.06.012
  42. Torres-Dorante, L.O., J. Lammel, and H. Kuhlmann. 2009. Use of a layered double hydroxide (LDH) to buffer nitrate in soil: long-term nitrate exchange properties under cropping and fallow conditions. Plant Soil 315:257-272. https://doi.org/10.1007/s11104-008-9748-4
  43. Trave, A., A. Selloni, A. Goursot, D. Tichit, and J. Weber. 2002. First principles study of the structure and chemistry of Mg-based hydrotalcite-like anionic clays. J. Phys. Chem. B 106:12291-12296. https://doi.org/10.1021/jp026339k
  44. UNFPA. 2012. The state of the world population report. By choice, not by chance: family planning, human rights and development. United Nations Population Fund, New York. pp.17-19.
  45. Urena-Amate, M.D. N.D. Boutarbouch. M.D. Socias-Viciana, and E. Gonzalez-Pradas. 2011. Controlled release of nitrate from hydrotalcite modified formulations Appl. Clay Sci. 52:368-373. https://doi.org/10.1016/j.clay.2011.03.018
  46. Wu, J., Y. Wei, J. Lin, and S. Lin. 2003. Study on starch-graftacrylamide/ mineral powder superabsorbent composite. Polymer 44:6513-6520. https://doi.org/10.1016/S0032-3861(03)00728-6
  47. Zhang, J.P., H. Chen, and A.Q. Wang. 2006. Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites. Eur. Polym. J. 42:101-108. https://doi.org/10.1016/j.eurpolymj.2005.06.029

Cited by

  1. Isolation of Antifungal Compound and Biocontrol Potential of Lysobacter antibioticus HS124 against Fusarium Crown Rot of Wheat vol.49, pp.4, 2016, https://doi.org/10.7745/KJSSF.2016.49.4.393