DOI QR코드

DOI QR Code

Dynamic Mesh 기법을 활용한 무미익 비행체 종축 동안정 미계수 예측

Estimation of Longitudinal Dynamic Stability Derivatives for a Tailless Aircraft Using Dynamic Mesh Method

  • 투고 : 2014.12.24
  • 심사 : 2015.02.24
  • 발행 : 2015.03.01

초록

기동 성능과 스텔스 성능을 극대화시키기 위해 무미익 람다(lambda) 형상의 무인전투기에 대한 연구개발이 각 국에서 활발히 진행되고 있다. 이러한 형상의 비행체는 불안정한 동적 비행특성을 가질 가능성이 높으며, 이를 비행제어 시스템으로 제어하기 위해서는 보다 정확한 동안정 미계수 예측이 필수적이다. 본 연구에서는 풍동기법의 단점을 보완하고 순수 공기역학적 동안정 미계수를 예측하기 위해 전산유체역학의 Dynamic Mesh 기법을 적용하여 강제진동법을 모사하였고, 해석결과를 기존에 확보한 시험결과와 비교하여 검증하였다. 해석결과는 종축 동안정 미계수에 국한하였으며, 무미익 람다 형상의 기준 받음 각, 진동주파수, 진동폭 등의 변화에 따른 동안정 미계수 변화 경향성을 파악하였다. 전산해석 결과는 풍동시험 데이터와 유사한 경향성을 보였으며, 제시된 연구기법을 통해 항공기 동안정 미계수를 효율적으로 구할 수 있음을 확인하였다.

For stealth performance consideration, many UAV designs are adopting tailless lambda-shaped configurations which are likely to have unsteady dynamic characteristics. In order to control such UAVs through automatic flight control system, more accurate estimation of dynamic stability derivatives becomes essential. In this paper, dynamic stability derivatives of a tailless lambda-shaped UAV are estimated through numerically simulated forced oscillation method incorporating dynamic mesh technique. First, the methodology is validated by benchmarking the CFD results against previously published experimental results of the Standard Dynamics Model(SDM). The dependency of initial angle of attack, oscillation frequency and oscillation magnitude on the dynamic stability derivatives of a tailless UAV configuration is then studied. The results show reasonable agreements with experimental reference data and prove the validity and efficiency of the concept of using CFD to estimate the dynamic derivatives.

키워드

참고문헌

  1. Le Loy, J. K. and Morgand, S., "SACCON CFD Static and Dynamic Derivatives using elsA," AIAA paper 2010-4562, Jun. 2010
  2. Da Ronch, A., Vallespin, D., Ghoreyshi, M., and Badcock, K. J., "Evaluation of Dynamic Derivatives Using Computational Fluid Dynamics," AIAA Journal, Vol. 50, No. 2, Feb. 2012, pp. 470-484. https://doi.org/10.2514/1.J051304
  3. Chung, H., Lee, H. and Lee. M., "Estimation of Aircraft Longitudinal Dynamic Derivatives Using Dynamic Mesh Method," Proceedings of 2014 KSAS Fall Confernces, 2014, pp. 25-28.
  4. Guglieri, G., and Quagliotti, F. B., "Dynamic Stability Derivavites Evaluation in a Low-Speed Wind Tunnel," AIAA Journal, Vol. 30, No. 2, May. 1993, pp. 421-423.
  5. Alemdaroglu, N., İyigűn, I., Altun, M., Uysal, Quagliotti, F., and Guglieri, G., "Determination of Dynamic Stability Derivatives Using Forced Oscillation Technique," AIAA paper 2002-0528, Jan. 2002.
  6. Lee, H., Gong, H., Kim, B., and Lee, S., "Prediction of Pitch and Roll Dynamic Derivatives for Flight Vehicle using CFD," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 5, 2012, pp. 395-404 https://doi.org/10.5139/JKSAS.2012.40.5.395
  7. Cummings, R. M., and Schutte, A., "Integrated Computational/Experimental Approach to Unmanned Combat Air Vehicle Stability and Control Estimation," Journal of Aircraft, Vol. 49, No. 6, Nov. 2012, pp. 1542-1557. https://doi.org/10.2514/1.C031430
  8. Schmidt, S. and Newman, D. M., "Estimation of Dynamic Stability Derivatives of a Generic Aircraft," 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand, Dec. 2010.
  9. Green, L., Spence, A., and Murphy, P., "Computational Methods for Dynamic Stability and Control Derivatives," AIAA paper 2004-0015, 2004.
  10. Hashimoto, A., Hashizume, M., and Sunada, S., "Unsteady Analysis of Aerodynamic Derivatives on Standard Dynamics Model," AIAA paper 2013-0343, 2013.
  11. Frink, N., Tormalm, M., and Schmidt, S., "Three Unstructured Computational Fluid Dynamics Studies on Generic Uninhabited Combat Air Vehicle," Journal of Aircraft, Vol. 49, No. 6, Nov. 2012, pp. 1619-1637. https://doi.org/10.2514/1.C031383
  12. Hall, R. M., et al., "Computational Methods for Stability and Control(COMSAC): The Time Has Come," AIAA paper 2005-6121, 2005.
  13. Chambers, J. and Hall, R., "Historical Review of Uncommanded Lateral-Directional Motions at Transonic Conditions," Journal of Aircraft, Vol. 41, No. 3, May 2004, pp. 436-447. https://doi.org/10.2514/1.4470
  14. Beyers, M. E. "Subsonic Roll Oscillation Experiments on the Standard Dynamics Model," AIAA paper 83-2134, 1983.
  15. Vicroy, D., Loeser, T., and Schűtte, A., "Static and Forced-Oscillation Tests of a Generic Uncommanded Combat Air Vehicle," Journal of Aircraft, Vol. 49, No. 6, Nov 2012, pp. 1558-1583. https://doi.org/10.2514/1.C031501
  16. Park, S., Kwon, J., Hur, K., and Byon, W., "Effect of Shock Waves on Dynamic Stability of Transonic Missiles," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 30, No. 3, 2001 pp. 12-20.
  17. Lee, H., Lee, S., and Joh, C., "Prediction of Longitudinal and Directional Stability Derivatives for the SDM using Forced Harmonic Oscillation," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 11, 2012, pp. 948-956. https://doi.org/10.5139/JKSAS.2012.40.11.948
  18. Rohlf, D., Schmidt, S., and Irving, J., "Stability and Control Analysis for an Unmanned Aircraft Configuration Using System-Identification Techniques," Journal of Aircraft, Vol. 49, No. 6, Nov 2012, pp. 1598-1609.
  19. Newman, D. M., "A Technique for Measurement of Static and Dynamic Longitudinal Aerodynamic Derivatives Using the DSTO Water Tunnel," DSTO-TR-2599, Dec. 2011.
  20. Huang, X. Z., "Wing and Fin Buffet on The Standard Dynamic Model," NATO RTO Report Number RTO-TR-26, 1981, pp. 361-381.
  21. Altun, M. and Iyigun, I., "Dynamic Stability Derivatives of a Maneuvering Combat Aircraft Model," Journal of Aeronautics and Space Technologies, Vol. 1, No. 3, Jan. 2004, pp. 19-27.
  22. Kim, J., et al., "An Experimental Study on Dynamic Stability Derivatives Measurements for Air Vehicles," Proceedings of 2012 KSAS Fall Confernces, 2012, pp. 1512-1516.