DOI QR코드

DOI QR Code

Design of Second-order BPS Systems for the Cancellation of Multiple Aliasing

다중 aliasing 소거를 위한 2차 BPS 시스템의 설계

  • Baek, Jein (Dept. Information Comm. Eng., Hannam University)
  • 백제인 (한남대학교 정보통신공학과)
  • Received : 2014.10.31
  • Accepted : 2015.02.26
  • Published : 2015.03.25

Abstract

In the bandpass sampling (BPS), the sampling frequency is lower than the frequency of the signal to be sampled. In this method, the baseband spectrum can be directly obtained by the sampling operation. This makes the frequency down converter unnecessary as well as the receiver's circuit simpler. In the second-order BPS system, two sampling devices are used. When aliasing occurs due to the sampling operation, the aliased component can be cancelled by combining the two sampled signals. In this paper, it is presented a design method of the second-order BPS system when multiple interferences are simultaneously aliased to the signal component. The optimum phase of the interpolant filter is searched for maximizing the signal-to-interference ratio, and a practical formula for the suboptimal phase is derived in terms of the power spectrum profile of the BPS input. A computer simulation has been performed for the proposed second-order BPS system, and it has been shown that the signal-to-interference ratio can be increased by considering multiple aliasing.

BPS(bandpass sampling) 기술은 입력 신호보다 낮은 주파수로 표본화하는 것으로서, 표본화 처리만으로 기저 대역 신호를 얻을 수 있다. 이 덕분에 별도의 주파수 하향 변환기를 사용하지 않아도 되어, 수신기 회로 구현이 간소화 된다. 2차 BPS 방식은 표본화 장치를 2개 사용하는 것이며, 표본화로 인하여 aliasing 간섭이 발생하더라도 두 가지 BPS 신호를 결합함으로써 간섭 성분을 제거할 수 있다. 본 논문에서는 여러 개의 간섭이 한꺼번에 신호 성분에 aliasing 되는 경우에 대한 2차 BPS 시스템의 설계 문제를 다루었다. 신호 대 간섭 비를 극대화시키도록 interpolant 필터의 최적 위상값을 구하는 방법을 분석하였고, BPS 입력단의 전력밀도 스펙트럼 자료를 이용하여 준최적 위상값을 구하는 실용적인 공식을 도출하였다. 제안된 시스템에 대하여 컴퓨터 시뮬레이션을 수행하였고, 다중 aliasing을 고려함으로써 신호 대 간섭 비가 증가되는 것을 확인하였다.

Keywords

References

  1. Rodney G. Vaughan, Neil L. Scott, and D. Rod White, "The theory of bandpass sampling," IEEE Trans. Signal Processing, vol. 39, no. 9, pp.1973-1984, Sept. 1991. https://doi.org/10.1109/78.134430
  2. G. Hueber and R. B. Staszewski, Multi-Mode/Multi-Band RF Transceivers for Wireless Communications, John Wiley & Sons, 2011.
  3. A. Kohlenberg, "Exact interpolation of band-limited functions," J. Appl. Phys., vol. 24, no. 12, Dec. 1953.
  4. Hyung-jung Kim, Jin-up Kim, Jae-Hyung Kim, Hongmei Wang, and In-Sung Lee, "The design method and performance analysis of RF subsampling frontend for SDR/CR receivers," IEEE Trans. Industrial Electronics, vol. 57, no. 5, pp.1518-525, 2010. https://doi.org/10.1109/TIE.2009.2033491
  5. Hyung-jung Kim, Jin-up Kim, Jae-Hyung Kim, Hongmei Wang, and In-Sung Lee, "RF band-pass sampling for multiband access CR/SDR receiver," ETRI Journal, vol. 32, no. 2, pp.214-221, 2010. https://doi.org/10.4218/etrij.10.1409.0073
  6. Yi-Ran Sun and Svante Signell, "Analysis and implementation of uniform quadrature bandpass sampling," IEEE SIPS 2005, pp.137-142, Athenes, Greece, Nov. 2005.
  7. Hyung-jung Kim, Study and Implementation of a BPS Receiver for SDR/CR, Ph. D., dissertation, Chungbuk National Univ., 2010.
  8. Hyuk Kim and Jein Baek, "The multiband interpolant filter in the second-order BPS system," Joural of the IEEK, vol. 50, no. 7, pp. 225-230, July 2013.
  9. Jeongmin Park, et. al., "A wideband LNA and high-Q bandpass filter for subsampling direct conversion receivers," Joural of the IEEK, vol. 45, SD, no. 11, pp. 89-94, July 2013.

Cited by

  1. Multistandard Receiver Design for Telemedicine Monitoring System vol.2018, pp.1687-7268, 2018, https://doi.org/10.1155/2018/7501914