
Journal of The Institute of Electronics and Information Engineers Vol.52, NO.3, March 2015 http://dx.doi.org/10.5573/ieie.2015.52.3.127

ISSN 2287-5026(Print) / ISSN 2288-159X(Online)

논문 2015-52-3-16

모바일 클라우드 컴퓨팅에서 상황인지 기반 모바일 장치

CPU사용

(Mobile Device CPU usage based Context-awareness in Mobile

Cloud Computing)

조 경 희
*
, 조 민 호

*
, 전 태 웅

**

(Kyunghee Cho, Minho Jo, and Taewoong Jeonⓒ)

요 약

상황인지(Context-Aware) 모바일 클라우드 컴퓨팅은 어플리케이션이 사용자의 위치, 시간, 근처에 사용자와 장치 그리고,

사용자의 상황적인 정보를 분석함으로써, 사용자 경험을 증대시킬 수 있는 새로운 전도 유망한 패러다임이다. 본 논문에서는

Volare 미들웨어를 탑재한 상황인지 모바일 클라우드 컴퓨팅 시스템의 성능 연구를 제공한다. Volare 미들웨어는 리소스와 장

치의 상황을 모니터하고, 실행시간에 클라우드 서비스 요구를 동적으로 적용한다. 이러한 접근은 실행시간에 상당한 비용절감

뿐 아니라, 더욱 효과적인 자원과 신뢰할 만한 클라우드 서비스를 제공할 것이다. 또한, 다른 QoS적용 정책에 대한 상황인지

모바일 클라우드 컴퓨팅의 성능을 연구했다. 시뮬레이션 결과는 배터리 레벨이 낮고 CPU 사용량은 높고, 사용자가 초기단계

QoS를 유지할 수 없을 때, 현 적용 정책에 의해서 서비스 비용이 줄어드는 것을 보여준다. 결과적으로, 본 논문에서 제안된

적용정책을 사용하면 상황에 따라 다르게 서비스 비용을 사용자들에게 제공할 수 있다.

Abstract

Context-aware mobile cloud computing is a new promising paradigm that allows to improve user experience by

analyzing contextual information such as user location, time of the day, neighboring devices and current activity. In this

paper we provide performance study of context-aware mobile cloud computing system with Volare middleware. Volare

monitors the resources and context of the device. and dynamically adapts cloud service requests accordingly, at discovery

time or at runtime. This approach allows for more resource-efficient and reliable cloud service discovery, as well as

significant cost savings at runtime. We also have studied the performance of context-aware mobile cloud computing for

different quality of service (QoS) adaptation policies. Our simulations results show that when battery level is low and CPU

usage is high and user cannot maintain the initial QoS, service cost is decreased according to current adaptation policy. In

conclusion, the current adaptation policy suggested in this paper may improve user experience by providing a dynamically

adapted service cost according to a situation.

 Keywords : context-awareness, cloud computing, mobile cloud computing, MID, quality of service

* 정회원, 고려대학교 컴퓨터정보학과

(Software Engineering Lab. Dept of Computer and

Information Science. Korea University)
ⓒ
 Corresponding Author (E-mail: jeon@korea.ac.kr)

Received ; December 30, 2014 Revised ; February 9, 2015

Accepted ; March 6, 2015

Ⅰ. Introduction

Mobile cloud computing
[1, 18～19]

 is a new platform

connecting the mobile device and cloud computing to

create a new infrastructure. Users want the ease of

using companies’ web sites or application from

(509)

128 모바일 클라우드 컴퓨팅에서 상황인지 기반 모바일 장치 CPU사용 조경희 외

anywhere and at anytime. Mobile devices can provide

this convenience. In the past client-server centered

mobile service models are not able to follow the

increasing demands from mobile users by services

diversity, user experience, security and privacy, and

so on. This paper is written as follows. Section Ⅱ

focuses on the current research related to middleware

and distributed systems. Section Ⅲ shows the

architecture of our proposed middleware along with

the description of the interaction between its modules

and components. Volare introduces a middleware for

monitoring the context of a mobile device that is

connected to a cloud service, and dynamically adapts

the services so as to make them more resource

efficient, reliable and cost efficient. It acts as an

intermediary. Section Ⅳ presents an example scenario

to illustrate our middleware use and describes how

the middleware has been used to deal with the

adaptation issue. Section V presents a simulation and

evaluation of the context-aware adaptive service

discovery behavior of the middleware which was run

on MATLAB. before achieving our middleware use.

Section VI summarizes and points to future work.

This paper adds a new important context, building on

a previous research advanced by P. Papakos et al.

That is, CPU resource is very limited in mobile

device, and thus this paper suggests to add a new

CPU usage status context as a part of the context

for solving this limitation.[12]

Ⅱ. Background and Related Work

Mobile clouds can utilize the sensing abilities of

their mobile devices such as location, acceleration,

etc. and act as providers of context awareness

information.[9] When a mobile user invokes a cloud

service, the request is accompanied by his/her

context information, and the most suitable service is

selected based on that information. Here is a model

consisting of four layers of context elements.
[13～14]

Monitored context: including environmental and

device settings, user preference for user-specific

preference settings, situational context relating to

monitored data on user location, time etc, and Service

Context information such as Quality of Service

(QoS).

Types of gaps: two types of gaps are identified:

gap on functionality that relates to an available

service and the needed service, and gap on

non-functionality relating to differences in QoS

values between the previous service and the current

one.

Types of causes: multiple interfaces, and an

interface may have different implementations, The

gaps arise because of the mismatches between these:

Service-level Unmatched, Service Interface-level

Unmatched, Service Component-level Unmatched, and

Component Instance-level Unmatched.

Adapter: refer to the remedial actions that should

be taken to remove the aforementioned causes.

Based on this model, the authors propose a context

aware service provisioning architecture consisting of

three tiers: User Layer that is made up by the mobile

devices where the applications run on, Agent Layer

that adapts the services according to context, and

Service Layer that deploys the services.

1. On context-aware adaptation for Web

Service

CARISMA and CHISEL[7~8] were developed to deal

with changing context and necessary adaptation and

also use a declarative policy language to put in the

reasoning rules for adaptation.

PLASTIC[2] Dynamic adaptation techniques in it

were ready for Service-Oriented Architectures

focusing on adaptation of entire workflows.

2. Service adaptations or service

personalization based on the context

information

Maamar et al.[6] suggest an approach of context

(510)

2015년 3월 전자공학회 논문지 제52권 제3호 129

Journal of The Institute of Electronics and Information Engineers Vol.52, NO.3, March 2015

based web service composition. They first identify

three types of contexts - user context, web service

context, and resource context, and their relationships

and to utilize these contexts in personalizing services,

they clarify parameters of each context.

Seyler et al.[5] suggest an approach to adapt web

service orchestrations based on context information[15～

17]. They define meta-models for context-aware service

composition, which are service composition

meta-model, context meta-model, and combined

meta-model of two previous meta-models. Based on

meta-models, they show deployment-time adaptation

and run-time adaptations.

Sheng et al.[4]
 develop a multi-agent based

architecture thataims at providing a distributed,

adaptive, and context-aware platform for personalized

service provisioning. This architecture brings about

three design principles Web Service, Agent, and

Publish/Subscribe System, and consists of four layers

such as User, Context, Orchestration and Service

Layers.

Sell et al. show a way to adapt workflows

context-sensitively by introducing a separate layer,

adaptation layer[3, 10] The adaptation layer automatically

calculates and semi-automatically executes the

necessary workflow adaptations after interacting with

a context service to subscribe context changes and an

adaptive WFMS to implement the workflow adaptation.

Ⅲ. Context-aware Provisioning Architecture

and Functionality

1. Context-aware Provisioning Architecture

The architecture is composed of three layers as

shown in Fig. 1. User layer consists of multiple

MIDs (Mobile Internet Devices), and client

applications are deployed on MIDs. Agent Layer

plays a role of adapting services by using context

«MID»
Client

Application

User Layer

Agent Layer

Service Layer

«generic»
Adapter

Adapter
Determiner

Context
Collector

«service»
CaaS

«service»
SaaS

User
Context
Registry

Context
Registry

Adapter
Registry

Service
Registry

• Device Context
• User Preference

• Situational ContextService invocation
& Context Information Service Results

Adaptive Service
Invocation Service Results

그림 1. 상황인지 예비단계 아키텍처

Fig 1. The architecture of the context aware

provisioning[11].

information including user preferences.

1) Context Collector, Adapter Determiner and

 Adapter

Service layer deploys multiple services such as CaaS

and SaaS. Fig. 2 shows three kinds of configurations

«service»
CaaS

«service»
SaaS

«generic»
Adapter

Adapter
Determiner

Context
Collector

Agent

Network

Agent on Client Side

«service»
CaaS

«service»
SaaS

«generic»
Adapter

Adapter
Determiner

Context
Collector

Agent

Network

Agent on Provider
Side

«service»
CaaS

«service»
SaaS

«generic»
Adapter

Adapter
Determiner

Agent

Network

Agent on Both Sides

Context
Collector

그림 2. 세 가지 실행 가능한 시스템 구성

Fig. 2. Three Possible Configurations[11].

(511)

130 모바일 클라우드 컴퓨팅에서 상황인지 기반 모바일 장치 CPU사용 조경희 외

as a result of allocating three layers to client and

provider. The last configuration is where Agent Layer

is distributed to client and provider side by considering

functionality distribution. At runtime, when a service

consumer calls for services with user and device

context information, Context Collector gathers

additional context information related to a service and

its runtime environment. Then, Adapter Determiner is

to discover several candidate services meeting

functionalities required by the consumer, generic

adapter is to make a service personalized to a service

consumer and is specialized to more specific

formswhich will be covered in the following section.

2) VOLARE middleware

VOLARE middleware is active, monitoring and

adding context data through the Context Monitoring

Module at a specified recheck rate (meaning the rate

by which the middleware rechecks for changes in the

context). The VOLARE middleware is situated on the

client device, as depicted in Fig. 3. VOLARE’s

architecture follows a modular approach, consisting of

Mobile OS

Application

Service Binding Module

QoS Monitoring
Module

Context Monitoring
Module

Service Request
Module

Adaptation Module

VOLARE

Service Request

Service
Binding

Context Data Service Request

Client Device

QoS
Monitor
Data

Service
Binding

Context
Data &
Context

Change Events

Service
Binding

Adapted
Service Request

Service Request

Service
Provis ion
Events

Cloud Broker

Adapted
Service Request

CLOUD
Renegotiation

Request
Service Binding

그림 3. VOLARE 미들웨어 모듈

Fig. 3. The VOLARE middleware modules[12].

several independent modules.

The Service Request Module intercepts the service

request from the client application and forwards it to

the Adaptation Module. This module implementation

is, by necessity, platform dependent. The Context

Monitoring Module monitors the context of the

device, providing context data to the Adaptation

Module. When significant deviations of the context

from the currently bound service are detected at

runtime, the context monitor alerts the Adaptation

Module to re-evaluate whether the presently bound

service satisfies the requirements of the client based

on its new context. This module implementation is

also, by necessity, platform dependent.

The Adaptation Module at discovery time handles

the adaptation of the service request according to

context and resource data. or further adaptation based

on the results of the initial search to re-evaluate and

possibly rebind to a more appropriate service

according to the context and QoS level.

The QoS Monitoring Module periodically checks if

the QoS levels of service offered by the service

provider deviate significantly from the agreed

requirements.

The Service Binding Module initiates service

discovery or rebinding sending the adapted service

request to the Broker. When an appropriate service is

discovered, the Service Binding Module forwards the

service binding to the mobile OS through the QoS

Monitoring Module.

In this paper we present an example scenario to

explain VOLARE’s use. Following that, we can show

the VOLARE functionality and architecture and the

policy language. The VOLARE middleware works at

two levels. At service discovery time, it intercepts

service requests from the client application while also

monitoring the context of the mobile device. This

may include hardware resources such as battery

consumption, CPU, Memory usage etc., environmental

variables like network bandwidth and user

preferences like Low Cost Binding, Low Power

(512)

2015년 3월 전자공학회 논문지 제52권 제3호 131

Journal of The Institute of Electronics and Information Engineers Vol.52, NO.3, March 2015

Operation etc. It then proceeds to adapt each service

request according to the context data, to better reflect

the current QoS requirements of the client. At

runtime, the middleware monitors existing cloud

bindings and the changing context of the device; if

the context of the client device or the provided QoS

level changes beyond specified thresholds then

VOLARE negotiates a dynamic adaptation of the QoS

levels provided by the cloud service itself or initiates

service discovery and rebinding to a more appropriate

service.

Ⅳ. Example Scenario

In the scenario, there are a mobile user, service

provider, and cloud provider (e.g., video streaming

application). If a Bandwidth drop happens due to

mobility, a user does not obtain an initially

requested QoS. while the binding cost and the device

resources spent will correspond to the initially

requested high bandwidth service, with current

bandwidth possibly being only a fraction of the

requested high bandwidth. User satisfaction is low

and a Service Provider has to pay more to a Cloud

Provider.

How can a User and a Service Provider obtain at

any time the best possible QoS level and cost of

binding that the current context permits?

They can do so with the VOLARE middleware

installed on the mobile and consequently

context-aware adaptive service discovery and binding

on cloud commercial services.

Any time a context parameter changes beyond

specified limits, then openly to the User and the

application, the middleware will search and bind to a

service providing the QoS level supported by the

current context.

Ⅴ. Simulation & Evaluation

We create different adaptive policies and criteria.

NormalCost is the price that a user pays when there

is no adaptation policy. Whether the QoS decreases

from the provider or not, the user still has to pay the

full 100% of the contract that they signed for.

In Table 1, Compressed1 is a compressed video

streaming. This policy happens when the battery

level is in between 40% and 60% and also the CPU

status also in the range of 75% and 85%. The cost

for this policy decreases by the amount of the

battery level and CPU usage status.

Compressed2 is a more compressed video

streaming than the previous policy. This policy starts

when the battery level is less than 40% and the CPU

status is greater than 85%. The cost for this policy

decreases by the amount of the battery level and

CPU usage status.

The last one is PlainDefault. This is the default

policy when the above policy types do not meet the

criteria specified for each of them. It considers the

device is working in a normal condition and the user

can get a quality service.

When the CPU usage status increases and Battery

level decreases the device cannot handle the original

QoS. So it decreases the cost the user has to pay by

Policy Criteria

Compressed

1

NormalCost =

NormalCost

((Bandwidth /

BaseBandwidth) -

0.2 (Battery) – 0.1

(1 - CPU))

Battery >=40%

and Battery <

60%;

CPU > 75% and

CPU <=85%;

Compressed

2

NormalCost =

NormalPrice

((Bandwidth /

BaseBandwidth) -

0.2 (Battery) –

0.25 (1 - CPU))

Battery <40%;

CPU > 85%;

PlainDefault
NormalCost =

NormalCost
Default:

표 1. Compressed1, Compressed2 and PlainDefault에

관한 정책과 적용기준

Table 1. Policy and criteria on Compressed1,

Compressed2, and PlainDefault.

(513)

132 모바일 클라우드 컴퓨팅에서 상황인지 기반 모바일 장치 CPU사용 조경희 외
Pe

rc
en

ta
ge

 to
 th

e
m

ax
in

um
 v

al
ue

s

그림 4. 시뮬레이션 결과

Fig 4. Simulation Output.

some numerical factor. Each cost has to be decreased

by the amount of the battery and CPU status with

some multiplying factor.

As it is shown in the cost calculation the

multiplying factors increase as the status of the

device becomes highly difficult to handle the request.

When there was no condition that satisfy the two

compression policies the cost shown in red line is

100%, it means the user will pay the total amount of

money to the service provider.

When there was a condition that satisfies the

second policy (Battery <40% and CPU > 85%) or

first policy (Battery >=40%, Battery < 60%, CPU >

75% and CPU <=85%) the cost decreases as shown

in the simulation output.

Ⅵ. Conclusion and Future work

We observe a potential positive connection between

Cloud Computing(CC)[20] and Mobile Internet

Device(MID), which is to providing services for

MIDs. That’s why problems caused by resource

limitation of MID can be resolved by deploying

functionalities on the provider side in the form of

service. Here is a way of technical issues to resolve;

monitoring user contexts and provisioning services

for the monitored contexts.

VOLARE middleware monitors the context of the

mobile device and then carries on to dynamically

adapt cloud service requests accordingly. This

produces an improvement on service discovery of

cloud services and binding, resource efficiency and

cost-effectiveness by choosing the most appropriate

services conforming to the current needs of the

client. Monitoring of the QoS levels and available

resources will allow for rebinding during runtime,

which will increase system reliability and reduce

resource and binding costs. The middleware

functionality is also searched for extending to

discover and bind to more than one service on the

cloud. An open issue that remains to be addressed is

to determine automatically reasonable adaptation

policies and recheck rate without need for a manual

adaptation policy from the developer, using the

context history of the device to anticipate context

changes in the future and produce or modify

adaptation policies accordingly.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. H. Katz, A. Konwinski, G. Lee, D. A.

Patterson, A. Rabkin, I. Stoica and M. Zaharia,

“Above the clouds: A Berkeley View of cloud

Computing,” UCB/EECS-2009-28, 2009.

[2] A. Bertolino, W. Emmerich, P. Inverardi, V.

Issarny, F. Liotopoulos and P. Plaza, “PLASTIC:

Providing Lightweight Adaptable Service

Technology for Pervasive Information &

Communication,” in Proc. 23rd ASE IEEE/ACM

International Conference on Bertolino. 2009.

[3] C. Sell and T. Springer, “Context-Sensitive

Adaptation of Workflows,” In Proc. of the

doctoral symposium for ESEC/FSE on Doctoral

symposium, pp. 1-4, 2009.

[4] Q. Z. Sheng, B. Benatallah and Z. Maamar,

“User-Centric Services Provisioning in Wireless

Environments,” Communications of the ACM,

vol. 51, no. 11, pp. 130-135, 2008.

[5] F. Seyler and C. Taconet, “Context Adaptation

of Web Service Orchestrations,” In Proc. of the

(514)

2015년 3월 전자공학회 논문지 제52권 제3호 133

Journal of The Institute of Electronics and Information Engineers Vol.52, NO.3, March 2015

Input: ?

Output: ?

Method:

1:

2:

3:

4:

5:

6:

7:

8:

9:

% For every minute 24hr * 60min = 1440min

maxbandwidth = 256

% Battery status in percentage

battery=zeros(1,1441)

% Bandwidth status in percentage

bandwidth=zeros(1,1441)

cpu=zeros(1,1441) % CPU status in percentage

cost=zeros(1,1441)

y=0:1:100

x=0:1:1440

% Battery

% A random battery percentage status

battery([1:200]) = (0.225)*x(1:200)+ 20

battery([201:400]) = 65

battery([401:700]) = 31.6667+((0.08333)*x(401:700))

16th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative

Enterprises, pp. 351-356, 2007.

[6] Z. Maamar, S. K. Mostefaoui and Q. H.

Mahmoud, “Context for Personalized Web

Services,” In Proc. of the 28th Hawaii

International Conference on System Sciences, pp.

66-73, 2005.

[7] L. Capra, W. Emmerich and C. Mascolo,

“CARISMA: context- aware reflective

middleware system for mobile applications,”

IEEE Transactions on Software Engineering, vol.

29, no. 10, pp. 929–945, 2003.

[8] J. Keeney and V. Cahill, “CHISEL:

Policy-Driven, Context-Aware, Dynamic

Adaptation Framework,” 4th IEEE International

Workshop on Policies for Distributed Systems

and Networks, pp. 3-14, 2003.

[9] G. D. Abowd, A. K. Dey, P. J. Brown, N.

Davies, M. Smith and P. Steggles, “Towards a

Better Understanding of Context and

Context-Awareness,” In Proc. of the 1st

International Symposium on Handheld and

Ubiquitous Computing, Lecture Notes in

Computer Science 1707, pp. 304-307, 1999.

[10] H. Schulzrinne, S. Casner, R. Frederick and V.

Jacobson, “RTP: A transport protocol for

real-time applications,” IETFRFC, 1996.

[11] H. La and S. Kim, “A Conceptual Framework

for Provisioning Context-aware Mobile Cloud

Services,” In Proc. of the 3rd IEEE International

Conference on Cloud Computing, pp. 466-473,

2010.

[12] P. Papakos, L. Capra and D. S. Rosenblum,

“VOLARE: Context-Aware Adaptive Cloud

Service Discovery for Mobile Systems,” In Proc.

of the 9th International Workshop on Adaptive

and Reflective Middleware, pp. 32-38, 2010.

[13] N. Fernando, S. W. Loke and W. Rahayu,

“Mobile cloud computing: A survey,” Future

Generation Computer Systems, vol. 29, no. 1, pp.

84-106, 2013.

[14] H. T. Dinh, C. Lee, D. Niyato and P. Wang, “A

survey of mobile cloud computing: architecture,

applications, and approaches,” Wireless

Communications and Mobile Computing, vol. 13,

no 18, pp. 1587-1611, 2013.

[15] A. Klein, C. Mannweiler, J. Schneider and H. D.

Schotten, “Access Schemes for Mobile Cloud

Computing,” in Proc. Of the 11th International

Conference on Mobile Data Management, pp.

387-392, Kansas City, USA, May 2010.

[16] D. Kovachev and R. Klamma, “Context-aware

Mobile Multimedia Services in the Cloud,” in

Proc. Of the 10th International Workshop of the

Multimedia Metadata Community on Semantic

Multimedia Database Technologies, Graz,

Austria, December 2009.

[17] K. Akherfi and H. Harroud, “Mobile Cloud

Middleware: A New Service for Mobile Users,”

International Journal of Computer, Information,

Systems and Control Engineering, vol. 8, no. 3,

pp. 27-31, 2014.

[18] W. Song and X. Su, “Review of Mobile cloud

computing,” in Proc. Of the 3rd International

Conference on Communication Software and

Networks, pp. 1-4, Xían, China, May 2011.

[19] H. Qi and A. Gani, “Research on Mobile Cloud

Computing: Review, Trend and Perspectives,” in

Proc. Of the 2nd International Conference on

Digital Information and Communication

Technology and its Applications, pp. 195-202,

2012.

[20] G. Pallis, “Cloud Computing: The New Frontier

of Internet Computing,” IEEE Internet

Computing, vol. 14, no. 5, pp. 70-73, 2010.

APPENDIX: Simulation Code in MATLAB

(515)

134 모바일 클라우드 컴퓨팅에서 상황인지 기반 모바일 장치 CPU사용 조경희 외

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

battery([701:900]) = 212.5-(0.175)*x(701:900)

battery([901:1200]) = (-5 +((0.0667)*x(901:1200)))

battery([1201:1441]) = 175-((0.08333)*x(1201:1441))

% Bandwidth

% Assuming a fluctuating bandwidth between

128kbs and 256kbs

bandwidth([1:300]) = (((-0.42667)*x(1:300) +

256)/maxbandwidth)*100

bandwidth([301:500]) = (((0.64)*x(301:500) -

64)/maxbandwidth)*100

bandwidth([501:700]) = (((-0.64)*x(501:700) +

576)/maxbandwidth)*100

bandwidth([701:950]) = ((128)/maxbandwidth)*100

bandwidth([951:1050]) = (((1.28)*x(951:1050) -

1088)/maxbandwidth)*100

bandwidth([1051:1250])= ((256)/maxb

andwidth)*100

bandwidth([1251:1441]) = (((-0.6737)*x(1251:1441)

+ 1098.1053)/maxbandwidth)*100

% CPU

% Assuming a fluctuating CPU status

CPU([1:150]) = 90

CPU([151:250]) = 80

CPU([251:500]) = 70

CPU([501:750]) = 80

CPU([751:1000]) = 85

CPU([1000:1200]) = 90

CPU([1200:1441]) = 65

% Cost

% From the Policy and the Criteria.

for c = 1:1441

% Compressed1 Video streaming

if battery(c)>=40 & battery(c)<60 &

CPU(c)>75 & CPU(c)<=85

cost(c) =

bandwidth(c)-0.2*battery(c)-0.1*(100-CPU

(c))

% Compressed2 Video streaming

elseif battery(c)<40 & CPU(c)>85

cost(c) =

bandwidth(c)-0.2*battery(c)-0.25*(100-CP

U(c))

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

% Default Video streaming

else

cost(c) = 100

end

end

% to make it into hrs

x=x/60

plot(x,battery,'g:','LineWidth',1.5)

hold on

plot(x,bandwidth,'k-.','LineWidth',1)

hold on

plot(x,CPU,'b:','LineWidth',1.5)

hold on

plot(x,cost,'r-','LineWidth',1)

xlabel('Time(hrs)')

ylabel('Percentage to the maxinum values')

title('Bandwidth, Battery and CPU efect on Cost')

legend('Battery','Bandwidth','CPU', 'Cost')

(516)

2015년 3월 전자공학회 논문지 제52권 제3호 135

Journal of The Institute of Electronics and Information Engineers Vol.52, NO.3, March 2015

저 자 소 개

조 경 희(정회원)

1994년 성결대학교 영어영문과

 학사 졸업.

1997년 연세대학교 교육대학원

 영어교육학 석사졸업.

2013년～현재 고려대학교 컴퓨터

 정보학과 박사과정

<주관심분야: Software, cloud computing, 통신,

컴퓨터>

전 태 웅(정회원)

1981년 서울대학교 컴퓨터통계

학과 학사 졸업.

1983년 서울대학교 컴퓨터통계

학과 석사졸업.

1992년 Ph.D. Illinois Institute of

Technology, Computer

Science

<주관심분야 : Software Engineering, 통신, 컴퓨

터>

조 민 호(정회원)

1984년 조선대학교 전자공학과

 학사 졸업.

1994년 Ph.D, Lehigh University,

 Industrial and Systems

<주관심분야 : Cognitive Radio, IoT, Mobile

cloud computing>

(517)

