DOI QR코드

DOI QR Code

저전력 무선 생체신호 모니터링을 위한 심전도/근전도/뇌전도의 압축센싱 연구

Study on Compressed Sensing of ECG/EMG/EEG Signals for Low Power Wireless Biopotential Signal Monitoring

  • Lee, Ukjun (Department of Wireless Communications Engineering, Kwangwoon University) ;
  • Shin, Hyunchol (Department of Wireless Communications Engineering, Kwangwoon University)
  • 투고 : 2014.12.26
  • 심사 : 2015.02.27
  • 발행 : 2015.03.25

초록

무선 헬스케어 서비스에서 생체신호 모니터링 시스템의 전력소모를 효과적으로 감소시킬 수 있는 압축센싱 기법을 다양한 생체신호에 적용하여 압축률을 비교하였다. 압축센싱 기법을 이용하여 일반적인 심전도, 근전도, 뇌전도 신호의 압축과 복원을 수행하였고, 이를 통해 복원된 신호와 원신호를 비교함으로써, 압축센싱의 유효성을 판단하였다. 유사랜덤 행렬을 사용하여 실제 생체신호를 압축하였으며, 압축된 신호는 Block Sparse Bayesian Learning(BSBL) 알고리즘을 사용하여 복원하였다. 가장 산제된 특성을 가지는 근전도 신호의 최대 압축률이 10배로 확인되어 가장 높았으며, 심전도 신호의 최대 압축률은 5배였다. 가장 산제된 특성이 작은 뇌전도 신호의 최대 압축률은 4배였다. 연구된 심전도, 근전도, 뇌전도 신호의 압축률은 향후 압축센싱을 적용한 무선 생체신호 모니터링 회로 및 시스템 개발시 유용한 기초자료로 활용될 수 있다.

Compresses sensing (CS) technique is beneficial for reducing power consumption of biopotential acquisition circuits in wireless healthcare system. This paper investigates the maximum possible compress ratio for various biopotential signal when the CS technique is applied. By using the CS technique, we perform the compression and reconstruction of typical electrocardiogram(ECG), electromyogram(EMG), electroencephalogram(EEG) signals. By comparing the original signal and reconstructed signal, we determines the validity of the CS-based signal compression. Raw-biopotential signal is compressed by using a psuedo-random matrix, and the compressed signal is reconstructed by using the Block Sparse Bayesian Learning(BSBL) algorithm. EMG signal, which is the most sparse biopotential signal, the maximum compress ratio is found to be 10, and the ECG'sl maximum compress ratio is found to be 5. EEG signal, which is the least sparse bioptential signal, the maximum compress ratio is found to be 4. The results of this work is useful and instrumental for the design of wireless biopotential signal monitoring circuits.

키워드

참고문헌

  1. 르나탄, 신요안, "압축센싱 기반의 무선통신 시스템", The Magazine of the IEIE, vol. 38, no. 1, pp. 56-67, Jan. 2011.
  2. 김태연, 응웬뚜랑녹, 신요안 "무선통신에서의 압축센싱 응용", The Magazine of the IEIE, vol. 41, no. 6, pp. 48-59, Jun. 2014.
  3. A. Milenkovic, C. Otto, and E. Jovanov, "Wireless sensor networks for personal health monitoring: Issues and an implementation," Comput. commun., vol. 29, Issue 13-14, pp. 2521-2533, Aug. 2006. https://doi.org/10.1016/j.comcom.2006.02.011
  4. D. Donoho, "Compressed sensing," IEEE Trans. on Information Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  5. E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. on Information Theory , vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  6. E. Candes and T. Tao, "Near optimal signal recovery from random projections: Universal encoding strategies?" IEEE Trans. on Information Theory , vol. 52, no. 12, pp.5406-5425, Dec. 2006. https://doi.org/10.1109/TIT.2006.885507
  7. F. Chen, A. P. Chandrakasan, and V. Stojanovic, "A signal-agnostic compressed sensing acquisition system for wireless and implantable sensors," in Proc. 2010 IEEE Custom Integrated Circuits Conf., pp. 1-4, Sep. 2010.
  8. J. N. Laska, S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk, and Y. Massoud, "Theory and implementation of an analog-to-information converter using random demodulation," in Proc. IEEE Int. Symp. Circuits and Systems(ISCAS), pp. 1959-1962, May. 2007.
  9. F. Chen, A. P. Chandrakasan, and V. Stojanovic, "Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors," IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 744-756, Mar. 2012. https://doi.org/10.1109/JSSC.2011.2179451
  10. M. Trakimas, T. Hancock, and S. Sonkusale "A Compressed Sensing Analog-to-Information Converter with Edge-Triggered SAR ADC Core," in Proc. IEEE Int. Symp. on Circuit and Systems(ISCAS), pp. 3162-3165, May 2012.
  11. S. S. Chen, D. L. Donoho, M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., vol. 20, no. 1, pp.33-61, 1998. https://doi.org/10.1137/S1064827596304010
  12. J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, pp. 4655-4666, Dec. 2007. https://doi.org/10.1109/TIT.2007.909108
  13. B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, "Least angle regression," Ann. Statist., vol. 32, no. 2, pp. 407-499, 2004. https://doi.org/10.1214/009053604000000067
  14. T. Blumensath and M. E. Davies, "Normalized iterative hard thresholding: Guaranteed stability and performance," IEEE J. Sel. Topics Signal Process., vol. 4, pp. 298-309, Mar. 2010. https://doi.org/10.1109/JSTSP.2010.2042411
  15. Z. Zhang and B. D. Rao "Extension of SBL Algorithms for the Recovery of Block Sparse Signals With Intra-Block Correlation," IEEE Trans. on Signal Processing, vol. 61, no. 8, pp. 2009-2015, Apr. 2013. https://doi.org/10.1109/TSP.2013.2241055
  16. H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, "Compressed Sensing for Real-Time Energy-Efficient ECG compression on Wireless Body Sensor Nodes," IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2456-2466, Sep. 2011. https://doi.org/10.1109/TBME.2011.2156795
  17. F. Chen, F. Lim, O. Abari, A. Chandrakasan and Vladimir Stojanovic, "Energy-Aware Design of Compressed Sensing Systems for Wireless Sensors under Performance and Reliability Constraints," IEEE Trans. on Circuits and Systems-I, vol. 60, no. 3, Mar. 2013.
  18. 전병우 "압축센싱과 영상처리 응용", The Magazine of the IEIE, vol. 41, no. 6, pp. 27-38, Jun. 2014.
  19. E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008. https://doi.org/10.1109/MSP.2007.914731
  20. MIT-BIH arrhythmia database. (2005). [Online]. Available : http://www.physionet.org/physiobank/database/mitdb/
  21. Y. Zigel, A. Cohen, and A. Katz, "The weighted diagnostic distortion (WDD) measure for ECG signal compression," IEEE Trans. Biomed. Eng., vol. 47, no. 11, pp. 1422-1430, Nov. 2000. https://doi.org/10.1109/TBME.2000.880093
  22. Joseph J. Carr, John M. Brown, Introduction to Biomedical Equipment Technology Fourth Edition, Prentice Hall, 2001.