References
- Bazant, Z.P. (1972), "Prediction of concrete creep-effects using age adjusted effective modulus method", ACI J., 69(4), 212-217.
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007a), "Bending moment prediction for continuous composite beams by neural networks", Adv. Struct. Eng., 10(4), 439-454. https://doi.org/10.1260/136943307783239390
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007b), "Hybrid procedure for cracking and timedependent effects in composite frames at service load", J. Struct. Eng., 133(2), 166-175. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(166)
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007c), "An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load", Steel Comp. Struct., Int. J., 7(3), 219-240. https://doi.org/10.12989/scs.2007.7.3.219
- Chaudhary, S., Pendharkar, U., Patel, K.A. and Nagpal, A.K. (2014), "Neural networks for deflections in continuous composite beams considering concrete cracking", Iran. J. Sci. Technol., Trans. Civil Eng., 38(C1+), 205-221.
- Comite Euro International du Beton-Federation International de la Precontrainte (CEB-FIP) (1993), Model code for concrete structures, Thomas Telford, London, UK.
- Feng, Q.M., Kim, D.K., Yi, J.H. and Chen, Y. (2004), "Baseline models for bridge performance monitoring", J. Eng. Mech., 130(5), 562-569. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:5(562)
- Ghali, A., Favre, R. and Elbadry, M. (2002), Concrete Structures: Stresses and Deformations, (3rd Ed.), Spon Press, London, UK.
- Gholizadeh, S. and Salajegheh, E. (2010), "Optimal seismic design of steel structures by an efficient soft computing based algorithm", J. Constr. Steel Res., 66(1), 85-95. https://doi.org/10.1016/j.jcsr.2009.07.006
- Gupta, V.K., Kwatra, N. and Ray, S. (2007), "Artificial neural network modeling of creep behavior in a rotating composite disc", Eng. Computation., 24(2), 151-164. https://doi.org/10.1108/02644400710729545
- Gupta, R.K., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2013), "Closed form solution for deflection of flexible composite bridges", Procedia Eng., 51, 75-83. https://doi.org/10.1016/j.proeng.2013.01.013
- Hsu, D.S., Yeh, I.C. and Lian, W.T. (1993), "Artificial neural damage detection of existing structure", Proceedings of the 3rd ROC and Japan Seminar on Natural Hazards Mitigation, Tainan, Taiwan, November, pp. 423-436.
- Kanwar, V., Kwatra, N. and Aggarwal, P. (2007), "Damage detection for framed RCC buildings using ANN modeling", Int. J. Damage Mech., 16(4), 457-472. https://doi.org/10.1177/1056789506065939
- Kaloop, M.R. and Kim, D. (2014), "GPS-structural health monitoring of a long span bridge using neural network adaptive filter", Survey Review, 16(334), 7-14.
- Kawamura, K., Miyamoto, A., Frangopol, D.M. and Abe, M. (2004), "Performance evaluation system for main reinforced concrete girders of existing bridges", Transport. Res. Rec., 1866, 67-78. https://doi.org/10.3141/1866-09
- Kim, D.K., Kim, D.H., Cui, J., Seo, H.Y. and Lee, Y.H. (2009), "Iterative neural network strategy for static model identification of an FRP deck", Steel Comp. Struct., Int. J., 9(5), 445-455. https://doi.org/10.12989/scs.2009.9.5.445
- Kwatra, N., Godbole, P.N. and Krishna, P. (2002), "Application of artificial neural network for determination of wind induced pressures on gable roof", Wind Struct., 5(1), 1-14. https://doi.org/10.12989/was.2002.5.1.001
- Min, J., Park, S., Yun, C.B., Lee, C.G. and Lee, C. (2012), "Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity", Eng. Struct., 39, 210-220. https://doi.org/10.1016/j.engstruct.2012.01.012
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M.Z., Jameel, M. and Arumugam, A.M.S. (2013a), "Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams", Comput. Concrete, 11(3), 237-252. https://doi.org/10.12989/cac.2013.11.3.237
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M.Z., Jameel, M., Hakim, S.J.S. and Zargar, M. (2013b), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struc. Eng. Mech., Int. J., 45(3), 319-332.
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2007), "Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete", Eng. Struct., 29(9), 2069-2079. https://doi.org/10.1016/j.engstruct.2006.11.009
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2010), "Neural networks for inelastic mid-span deflections in continuous composite beams", Struc. Eng. Mech., Int. J., 36(2), 165-179. https://doi.org/10.12989/sem.2010.36.2.165
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2011), "Prediction of moments in composite frames considering cracking and time effects using neural network models", Struc. Eng. Mech., Int. J., 39(2), 267-285. https://doi.org/10.12989/sem.2011.39.2.267
- Reich, Y. and Barai, S.V. (1999), "Evaluating machine learning models for engineering problems", Artif. Intell. Eng., 13(3), 257-272. https://doi.org/10.1016/S0954-1810(98)00021-1
- Shahin, M. and Elchanakani, M. (2008), "Neural networks for ultimate pure bending of steel circular tubes", J. Constr. Steel Res., 64(6), 624-633. https://doi.org/10.1016/j.jcsr.2007.12.001
- Sharma, R.K., Maru, S. and Nagpal, A.K. (2003), "Effect of creep and shrinkage in a class of composite frame-shear wall systems", Steel Comp. Struct., Int. J., 3(5), 333-348. https://doi.org/10.12989/scs.2003.3.5.333
- Sttutgart Neural Network Simulator (SNNS) user manual (1998), University of Sttutgart: Institute For Parallel and Distributed High Performance Systems (IPVR), Version 4.2, Accessed on December 27, 2012; Available at: http://www-ra.informatik.uni-tuebingen.de/SNNS/
- Tadesse, Z., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2012), "Neural networks for prediction of deflection in composite bridges", J. Constr. Steel Res., 68(1), 138-149. https://doi.org/10.1016/j.jcsr.2011.08.003
- Uddin, M.A., Jameel, M., Razak, H.A. and Islam, A.B.M. (2012), "Response prediction of offshore floating structure using artificial neural network", Adv. Sci. Lett., 14(1), 186-189. https://doi.org/10.1166/asl.2012.4049
- Wang, W.W., Dai, J.G., Guo, L. and Huang, C.K. (2011), "Long-term behavior of prestressed old-new concrete composites beams", J. Bridge Eng., 16(2), 275-285. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000152
Cited by
- Rapid prediction of deflections in multi-span continuous composite bridges using neural networks vol.15, pp.4, 2015, https://doi.org/10.1007/s13296-015-1211-9
- Closed-form expressions for long-term deflections in high-rise composite frames vol.17, pp.1, 2017, https://doi.org/10.1007/s13296-016-0115-7
- Rapid prediction of inelastic bending moments in RC beams considering cracking vol.18, pp.6, 2015, https://doi.org/10.12989/cac.2016.18.6.1113
- Neural network based approach for rapid prediction of deflections in RC beams considering cracking vol.19, pp.3, 2015, https://doi.org/10.12989/cac.2017.19.3.293
- Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors vol.64, pp.4, 2015, https://doi.org/10.12989/sem.2017.64.4.437
- An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.751