DOI QR코드

DOI QR Code

이동 방향 정보를 이용한 DTN 라우팅: TAILWIND

TAILWIND: Mobility information based Routing for Delay Tolerant Network

  • 조서익 (연세대학교 컴퓨터과학과) ;
  • 김선현 (연세대학교 컴퓨터과학과) ;
  • 문수훈 (연세대학교 컴퓨터과학과) ;
  • 한승재 (연세대학교 컴퓨터과학과)
  • 투고 : 2014.09.17
  • 심사 : 2014.12.21
  • 발행 : 2015.03.15

초록

기지국 중심의 네트워크에서 기지국에 집중되는 traffic의 과부하는 피할 수 없는 문제이다. traffic 과부하를 완화시킬 수 있는 하나의 대안으로 traffic 부하를 노드로 분산시키는 peer-to-peer DTN이 있다. 메시지 전달 성공률을 향상시키고 메시지 overhead를 낮추기 위해, 기존의 flooding 기반 DTN 라우팅에서 이용하지 않았던 노드의 이동정보를 이용하여 새로운 라우팅을 제안한다. 제안하는 라우팅 scheme에서, 노드의 이동정보에 기반한 metric은 각 노드가 목적지까지 얼마나 근접하게 이동할 것인지에 따라 계산된다. 메시지는 메시지를 복사하고자 하는 노드의 목적지까지 예상 근접 거리보다 더 가까운 값을 가지는 주변노드들에게 복사된다. 시뮬레이션을 통해 random mobility model과 실제 mobility trace를 이용하여 이동정보를 이용하지 않은 기존 라우팅과의 성능을 비교한다. 성능 분석 결과, 제안하는 라우팅이 기존의 라우팅들 보다 10~30% 더 적게 메시지를 복사하면서 성공적으로 목적지까지 전달하는 것을 보여준다.

In base station based networks, traffic overload at the base station is inevitable. Peer-to-peer DTN which disperses the traffic overhead to each node can relieve the traffic overload at the base station. To increase the message delivery ratio and reduce the message overhead, we present novel routing using mobility information which can be obtained from each node, unlike the existing flooding based routings. In the proposed routing scheme, the routing decision metric, which is defined based on the node mobility information, is computed by using the expected distance between each node to the destination. The message is copied to other nodes that have lower expected distance to the destination than the value for the node willing to copy the message. We conducted simulations by using both a random mobility model and a real mobility trace to compare the performance of the proposed routing scheme to the existing routing scheme that does not utilize the mobility information. The performance evaluation showed the proposed routing successfully delivers messages with 10% to 30% less copies compared to previously proposed routing schemes.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. A. Vahdat and D. Becker, "Epidemic Routing for Partially connected Ad hoc Networks," Technical Report CS-200006, Duke University, 2000.
  2. J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine "MaxProp: Routing for Vehicle-Based Disruption Tolerant Networks," IEEE INFOCOM, Vol. 6, pp. 1-11, Apr. 2006.
  3. T. Spyropoulos, K. Psounis, C. S. Raghavendra. "SprayAndWait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks," Proc. of the 2005 ACM SIGCOMM workshop on Delaytolerant networking, pp. 252-259, 2005.
  4. A. Balasubramanian, B. Levine, A. Venkataramani, "DTN Routing as a resource allocation problem," ACM SIGCOMM Computer Communication Review, Vol. 37, No. 4, pp. 373-384, 2007. https://doi.org/10.1145/1282427.1282422
  5. S. Jain, K. Fall, R. Patra, "Routing in a delay tolerant network," ACM, Vol. 34, No. 4, pp. 145-158, 2004.
  6. D. Henrksson, T. F. Abdelzaher, and R. K. Ganti, "A caching based approach to Routing in delay-tolerant networks," ICCCN, Proc. of 16th International Conference on. IEEE, pp. 69-74, 2007.
  7. D. Chang, Y. Shim, G. Kim, N. Choi, J. Rhy, T. Kwon, Y. Choi, "Mobility Information based Routing for Delay and Disruption Tolerant Network," Journal of KIISE, Vol. 36, No. 2, pp. 13-28, Apr. 2009. (in Korean)
  8. P. Hui, J. Crowcroft, E. Yoneki, "Bubble rap: socialbased forwarding in delay-tolerant networks," IEEE Transactions on Mobile Computing, Vol. 10, No. 11, pp. 1576-1589, Nov. 2011. https://doi.org/10.1109/TMC.2010.246
  9. C. Boldrini, M. Conti, A. Passarella, "Exploiting users social relations to forward data in opportunistic networks: the HiBOp solution," Pervasive and Mobile Computing, Vol. 4, No. 5, pp. 633-657, 2008. https://doi.org/10.1016/j.pmcj.2008.04.003
  10. C. Boldrini, M. Conti, A. Passarella, "Content place: social-aware data dissemination in opportunistic networks," Proc. of the 11th international symposium on Modeling, analysis and simulation of wireless and mobile systems, ACM, pp. 203-210, 2008.
  11. T. Spyropoulos, K. Psounis, C. S. Raghavendra, "Efficient Routing in Intermittently Connected Mobile Networks: The Single-Copy Case," IEEE/ACM Transaction on Networking(TON), Vol. 16, No. 1, pp. 63-76, 2008. https://doi.org/10.1109/TNET.2007.897962
  12. A. Keranen, J. Ott and T. Karkkainen, "The ONE Simulator for DTN Protocol Evaluation," Proc. of the 2nd international conference on simulation tools and techniques, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Mar. 2009.
  13. I. Rhee and M. Shin and S. Hong and K. Lee and S. Kim and S.Chong, (2007, Jul 21). CRAWDAD: ncsu/ mobilitymodels/ GPS/NCSU dataset [Online]. Available: http://crawdad.cs.dartmouth.edu/ncsu/mobilitymodels/

피인용 문헌

  1. An Improved Opportunistic Routing Protocol Based on Context Information of Mobile Nodes vol.8, pp.8, 2018, https://doi.org/10.3390/app8081344