DOI QR코드

DOI QR Code

Density-Based Ramp Metering Method Considering Traffic of Freeway and Ramp on ITS

지능형 교통시스템에서 도시 고속도로와 램프의 교통량을 고려한 밀도 기반 램프 미터링 방법

  • 전수빈 (강원대학교 컴퓨터정보통신공학과) ;
  • 정인범 (강원대학교 컴퓨터정보통신공학과)
  • Received : 2014.11.17
  • Accepted : 2014.12.30
  • Published : 2015.03.15

Abstract

Ramp metering is the most effective and direct method to control a vehicle entering the freeway. This paper proposed the new density-based ramp metering method. Existing methods that use the flow data had low reliability data and can have various problems. Also, when the ramp metering was operated by freeway congestion, the additional congestion and over-capacity can occur in the ramp. To solve this problem with the existing method, the proposed method used the density and acceleration data of the freeway and considered the ramp status. The developed strategy was tested on Trunk Highway 62 west bound (TH-62 WB) in Minnesota Twin-City and compared with Stratified Zone Metering(SZM), which had been operating in the Twin-City freeway. To constitute the experiment environment, the VISSIM simulator was used. The Traffic Information and Condition Analysis System (TICAS) was developed to control the PTV VISSIM simulator. The experiment condition was set between 2:00 PM and 7:00 PM, Oct 5th, 2014 during severe traffic congestion. The simulation results showed that total travel time was reduced by 20% for SZM. Thus, we solved the problem of ramp congestion and over-capacity.

램프 미터링은 램프로부터 도로에 진입하는 차량을 통제 함으로써 교통 상황을 향상 시키는 직접적이고 효과적인 방법이다. 본 논문에서는 밀도 데이터를 이용한 새로운 램프 미터링 방법을 제안한다. 교통량을 사용하는 기존 방법은 낮은 신뢰도의 데이터에 의해 동작 되며 다양한 문제를 가질 수 있다. 또한 주 도로에 정체가 발생 했을 때 램프의 추가적인 교통 정체 및 램프의 용량초과 문제가 발생 할 수 있다. 기존 방법에 대한 문제를 해결 하기 위해 제안하는 방법은 밀도와 가속도 데이터를 이용한 새로운 램프 미터링 방법을 제안한다. 실험을 위해 미네소타 주 트윈시티의 TH-62의 고속 국도를 선택하였고 효율성을 테스트 하기 위해 미네소타 주에서 동작하고 있는 Stratified Zone Metering(SZM)과 비교 실험을 진행한다. 실험 환경은 PTV사의 VISSIM 시뮬레이터를 이용하였고 이를 제어할 수 있는 도로 제어 및 평가 시스템(TICAS)을 개발 하여 시뮬레이션을 진행 하였다. 실험 조건은 정체가 가장 심한 2011년 10월 25일 오후 2시부터 오후 7시까지로 설정한다. 실험 결과 도로의 총 여행시간과 정체구간은 SZM보다 20% 감소 하였다. 또한 각 램프의 대기 열 길이를 측정한 결과 SZM에서 발생하던 램프의 길이를 초과하는 문제점이 해결된 것을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Jo, Y. T., Y. Kim, and I. B. Jung, "Variable Speed Limit to Improve Safety near Traffic Congestion on Urban Freeways," International Journal of Fuzzy Systems, Vol. 14, No. 2, pp. 278-288, Sep. 2012.
  2. Papageorgiou, Markos, and Apostolos Kotsialos, "Freeway ramp metering: An overview," Intelligent Transportation Systems, 2000, Proc. of, 2000 IEEE, pp. 228-239, 2000.
  3. Wang, Yibing, et al., "Local ramp metering in the presence of a distant downstream bottleneck: Theoretical analysis and simulation study," Intelligent Transportation Systems, IEEE Transactions on, Vol. 15, No. 5, pp. 1-16, Mar. 2014. https://doi.org/10.1109/TITS.2014.2298352
  4. Papamichail, Ioannis, and Markos Papageorgiou. "Traffic-responsive linked ramp-metering control," Intelligent Transportation Systems, IEEE Transactions on, Vol. 9, No. 1, pp. 111-121, Mar. 2008. https://doi.org/10.1109/TITS.2007.908724
  5. Papageorgiou, Markos, Jean-Marc Blosseville, and Habib Hadj-Salem, "Modelling and real-time control of traffic flow on the southern part of Boulevard Périphérique in Paris: Part I: Modelling," Transportation Research Part A: General, Vol. 24, No. 5, pp. 345-359, Sep. 1990. https://doi.org/10.1016/0191-2607(90)90047-A
  6. Geroliminis, Nikolas, Anupam Srivastava, and Panos Michalopoulos, "A dynamic-zone-based coordinated ramp-metering algorithm with queue constraints for Minnesota's freeways," Intelligent Transportation Systems, IEEE Transactions on, Vol. 12, No. 4, pp. 1576-1586, Sep. 2011. https://doi.org/10.1109/TITS.2011.2164792
  7. Xin, Wuping, et al., "Minnesota's new ramp control strategy: design overview and preliminary assessment," Transportation Research Record: Journal of the Transportation Research Board, Vol. 1867, No. 1, pp. 69-79, Jan. 2004. https://doi.org/10.3141/1867-09
  8. Feng, Baichun, John Hourdos, and Panos G. Michalopoulos, "Improving Minnesota's stratified ramp control strategy," Transportation Research Record: Journal of the Transportation Research Board, Vol. 1959, No. 1, pp. 77-83, Jan. 2006. https://doi.org/10.3141/1959-09
  9. Liu, Henry X., Xinkai Wu, and Panos G. Michalopoulos, "Improving queue size estimation for Minnesota's stratified zone metering strategy," Transportation Research Record: Journal of the Transportation Research Board, Vol. 2012, No. 1, pp. 38-46, Jan. 2007. https://doi.org/10.3141/2012-05
  10. Immers, L. H., and S. Logghe, Traffic flow theory, pp. 1-39, Faculty of Engineering, Department of Civil Engineering, Section Traffic and Infrastructure, Kasteelpark Arenberg, 2002.
  11. T. V. Mathew, K. V. K. Rao, Introduction to Transportation engineering, Indian Institute of Technology, Bombay, 2006.
  12. Kwon, Eil, and Chongmyung Park, Development of Freeway Operational Strategies with IRIS-in-Loop Simulation, Minnesota Department of Transportation, Twin cities, 2012.
  13. Gomes, G., May, A., & Horowitz, R., "Congested Freeway microsimulation model Using VISSIM," Transportation Research Record: Journal of the Transportations Research Board, Vol. 1876, No. 1, pp. 71-81, Jan. 2004. https://doi.org/10.3141/1876-08
  14. Jo, Youngtae, and Inbum Jung, "Analysis of vehicle detection with WSN-based ultrasonic sensors," Sensors, No. 14, Vol. 8, pp. 14050-14069, Aug. 2014. https://doi.org/10.3390/s140814050