Acknowledgement
Grant : 원자력 지식계승 인재양성 사업팀
References
- ABAQUS version 6.13 (2013), ABAQUS Standard/User's Manual, Simulia Inc.
- ASME (2007), Boiler and Pressure Vessel Code, Section XI, Fracture Toughness Criteria for Protection against Failure, Appendix G.
- Chen, M., Lu, F., Wang, R. and Ren, A. (2014), "Structural integrity assessment of the reactor pressure vessel under the pressurized thermal shock loading", Nucl. Eng. Des., 272, 84-91. https://doi.org/10.1016/j.nucengdes.2014.01.021
- Chou, H.W. and Huang, C.C. (2014), "Effects of fracture toughness curves of ASME section XI- Appendix G on a reactor pressure vessel under pressure-temperature limit operation", Nucl. Eng. Des., 280, 404- 412. https://doi.org/10.1016/j.nucengdes.2014.09.002
- Dickson, T.L., Fochr, E. and Kirk, M. (2010), "Review of proposed methodology for a risk-informed relaxation to ASME Section XI - Appendix G", Proceedings of ASME 2010 Pressure Vessels & Piping Division Conference, PVP2010-25010 in CD-ROM, Bellevue, Washington, USA.
- Dickson, T.L., Yin, S.J., Kirk, M. and Chou, H.W. (2011), "Derivation of the new pressurized thermal shock screening criteria", Proceedings of ASME 2011 Pressure Vessels & Piping Division Conference, PVP2011-57008 in CD-ROM, Baltimore, Maryland, USA.
- Gonzalez-Albuixech, V.F., Qian, G. and Niffenegger, M. (2014), "Integrity analysis of reactor pressure vessels subjected to pressurized thermal shocks by XFEM", Nucl. Eng. Des., 275, 336-343. https://doi.org/10.1016/j.nucengdes.2014.04.038
- Huang, C.C., Chou, H.W., Chen, B.Y., Liu, R.F. and Lin, H.C. (2012), "Probabilistic fracture analysis for boiling water reactor pressure vessels subjected to low temperature over-pressure event", Annal. Nucl. Energy, 43, 61-67. https://doi.org/10.1016/j.anucene.2011.12.028
- Jang, C.H. (2002), "Construction of the P-T limit curve for the nuclear reactor pressure vessel using influence coefficient methods: cooldown curve", J. Mech. Sci. Tech., 26(3), 505-513.
- Jhung, M.J., Choi, Y.H. and Chang, Y.S. (2011), "Comparison of vessel failure probabilities during PTS for Korean nuclear power plants", Struct. Eng. Mech., 37(3), 257-265. https://doi.org/10.12989/sem.2011.37.3.257
- Jhung, M.J., Park, Y.W. and Lee, J.B. (1997), "Integrity evaluation of Kori 1 reactor vessel for Rancho Seco transient", J. KSME, 21(7), 1089-1096.
- KINS (2008), Reactor Probabilistic Integrity Evaluation (R-PIE) Code: User's Guide, Korea Institute of Nuclear Safety, Daejeon.
- Lee, T.J., Choi, J.B., Kim, Y.J. and Park, Y.W. (2002), "A parametric study on pressure-temperature limit curve using 3D finite element analyses", Nucl. Eng. Des., 214, 73-81. https://doi.org/10.1016/S0029-5493(02)00016-X
- Park, S.Y., Kim, J.Y. and Kim, T.W. (2010), "Evaluation of P-T limit curve for reactor pressure vessel using finite element analysis", The KSME Fall Annual Conference, Jeju, Korea.
- Qian, G. and Niffenegger, M. (2013a), "Integrity analysis of a reactor pressure vessel subjected to pressurized thermal shocks by considering constraint effect", Eng. Fract. Mech., 112-113, 14-25. https://doi.org/10.1016/j.engfracmech.2013.09.009
- Qian, G. and Niffenegger, M. (2013b), "Procedures, methods and computer codes for the probabilistic assessment of reactor pressure vessels subjected to pressurized thermal shocks", Nucl. Eng. Des., 258, 35- 50. https://doi.org/10.1016/j.nucengdes.2013.01.030
- Qian, G., Gonzalez-Albuixech, V.F. and Niffenegger, M. (2014), "Probabilistic assessment of a reactor pressure vessel subjected to pressurized thermal shocks by using crack distributions", Nucl. Eng. Des., 270, 312-324. https://doi.org/10.1016/j.nucengdes.2013.12.062
- Qian, G. and Niffenegger, M. (2014), "Deterministic and probabilistic analysis of a reactor pressure vessel subjected to pressurized thermal shocks", Nucl. Eng. Des., 273, 381-395. https://doi.org/10.1016/j.nucengdes.2014.03.032
- Ren, A., Lu, F., Chen, M. and Wu, H. (2013), "Influence of temperature related parameters on P-T limit curves for RPV", J. Mech. Strength, 35(4), 454-459.
- Song, D.S. and Yoo, S.S. (2009), "LTOP evaluation for continued operation for NPP", The KSME Fall Annual Conference, Pyeongchang, Gangwon, Korea.
- US NRC (1985), Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events, 10CFR50.61, US Nuclear Regulatory Commission, Washington, DC.
- US NRC (1987), Format and Content of Plant-specific Pressurized Thermal Shock Analysis Reports for Pressurized Water Reactor, Regulatory Guide 1.154, US Nuclear Regulatory Commission, Washington, DC.
- US NRC (1988), Radiation Embrittlement of Reactor Vessel Materials, Regulatory Guide 1.99, Rev.2, US Nuclear Regulatory Commission, Washington, DC.
- US NRC (2010), Alternative Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events, 10CFR50.61a, US Nuclear Regulatory Commission, Washington, DC.
Cited by
- Direct and indirect methods for determination of mode I fracture toughness using PFC2D vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.039
- Experimental and numerical investigation of the effect of sample shapes on point load index vol.13, pp.6, 2017, https://doi.org/10.12989/gae.2017.13.6.1045
- The discrete element method simulation and experimental study of determining the mode I stress-intensity factor vol.66, pp.3, 2018, https://doi.org/10.12989/sem.2018.66.3.379
- The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2015, https://doi.org/10.12989/cac.2018.22.4.373
- Numerical simulation of shear mechanism of concrete specimens containing two coplanar flaws under biaxial loading vol.22, pp.4, 2018, https://doi.org/10.12989/sss.2018.22.4.459
- Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D vol.22, pp.5, 2015, https://doi.org/10.12989/sss.2018.22.5.611
- Investigation of shear behavior of soil-concrete interface vol.23, pp.1, 2015, https://doi.org/10.12989/sss.2019.23.1.081
- Relationship between point load index and mode II fracture toughness of granite vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.025