DOI QR코드

DOI QR Code

기초의 근입깊이가 보상기초의 거동에 미치는 영향

Effect of Embedment Depth of Footing on Behavior of Compensated Foundation

  • 투고 : 2014.12.23
  • 심사 : 2015.02.12
  • 발행 : 2015.02.28

초록

기초의 근입비가 보상기초의 극한지지력과 침하량에 미치는 영향을 살펴보고자 수치해석을 수행하였다. 수치해석에 의한 극한지지력비는 이론식에 의한 극한지지력비보다 컸으며 전체적으로 극한지지력비가 근입비에 비례하는 결과를 보였으나 정사각형기초에 대한 수치해석결과만 극한지지력비가 근입비에 따라 급격하게 증가하는 양상을 보였다. 모래지반에 놓인 띠기초의 경우 근입비에 따른 극한지지력비는 수치해석과 Meyerhof 방법에 의한 경우가 비슷하였으며 대체로 근입비의 제곱에 가까운 값을 나타내었으며 점토지반에 놓인 띠기초의 경우 이론식에 의할 경우 극한지지력비는 근입비의 영향을 크게 받지 않았고 수치해석결과에 따르면 근입비를 약간 상회하는 값들을 보였다. 수치해석결과에 따르면 근입비에 따른 정사각형기초의 극한지지력비가 띠기초의 그것에 비하여 크게 계산되었다. 수치해석결과를 통해 볼 때 전체적으로 근입비가 1인 경우 침하량비는 0.4 정도의 값을 보이다가 근입비가 커짐에 따라 침하량비가 감소하는 양상을 보였으며 느슨한 모래의 경우 상대적으로 침하량비가 가장 작았다.

In order to find out the effect of embedment ratio on behavior compensated foundation, numerical analyses were performed. Bearing capacity ratios obtained from numerical analyses were greater than those obtained from theoretical equations and it could be seen that the bearing capacity ratio was proportional to the embedment ratio with only exception of the case of square footing in which bearing capacity ratio was increased rapidly with the embedment ratio. For the case of strip footing on sand, the bearing capacity ratios obtained from the numerical analyses and Meyerhof equation were similar with each other and magnitudes of those were as much as square of the embedment ratio but the bearing capacity ratios were little affected by the embedment ratios for the case of strip footing on clay. It can be said that the bearing capacity ratios obtained from the square footing are greater than those obtained from the strip footing. According to the numerical analysis, values of settlement ratios which correspond to the embedment ratio of one were about 0.4 and settlement ratios were decreased with increase of the embedment ratios. Settlement ratios of the loose sand were smaller than those of the dense sand and the clay.

키워드

참고문헌

  1. Terzaghi, K., Theoretical soil mechanics, John Wiley, New York, 1943. DOI: http://dx.doi.org/10.1002/9780470172766
  2. Skempton, A. W., "The Bearing Capacity of Calys", Proceedings, Building Research Congress, Vol. 1, 180-189, London, 1951.
  3. Meyerhof, G. G. (1963). "Some Recent Research on the Bearing Capacity of Foundations", Canadian Geotechnical Journal, Vol. 1, No. 1, 16-26 (Reprinted in Meyerhof, 1982) DOI: http://dx.doi.org/10.1139/t63-003
  4. Brinch Hansen., "A General Formula for Bearing Capacity", Bulletin No. 11, Danish Geotechnical Institute, Copenhagen, 1961.
  5. DeBeer, E. E. and Ladanyi, B., "Experimental study of the bearing capacity of sand under circular foundations resting on the surface", Proceedings, 5th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, 577-585. Paris, 1961.
  6. Farley, J. (1827). A Treatise on the Steam Engine, London (quoted in Golder, 1975)
  7. Golder, H.Q., "Floating Foundations, Ch. 18" in Foundation Engineering Handbook, H.F. Winterkorn and H. Fang, Ed., Van Nostrand Reinhold, New York, 1975.
  8. Zimmermann, T., ZSOIL.PC Getting started, Elmepress international, Lausanne, Switzerland, 2013.
  9. Coduto, D. P., Foundation design, Prentice-Hall, Inc., 63-93, 1994.
  10. Craig, R. F., Soil mechanics, Van Nostrand Reinhold Co. Ltd., 122, 1983.
  11. Bolton, M. D., "The Strength and dilatancy of sands", Geotechnique 1/36, 65-78, 1986. DOI: http://dx.doi.org/10.1680/geot.1986.36.1.65